CFD simulation of pulverized fuel combustion, gasification and ash deposition in entrained flow reactors

Dipl.-Ing. Stefan Halama
Dipl.-Ing. (FH) Ulrich Kleinhans
Prof. Dr.-Ing. Hartmut Spreterhoff

June 6th, 2013
Outline

• Motivation

• **Part I: Gasification kinetics**
 • Modeling of the gasification process
 • Experimental facilities
 • Meshing
 • Solution strategy
 • Results

• **Part II: Ash deposition**
 • Deposition mechanisms
 • Experimental setup
 • Mathematical model
 • Validation

• Summary and Outlook
Motivation

Classification of gasifier types:

<table>
<thead>
<tr>
<th></th>
<th>Fixed bed</th>
<th>Fluidized bed</th>
<th>Entrained flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet temperature</td>
<td>425-600 °C</td>
<td>900-1050 °C</td>
<td>1250-1600 °C</td>
</tr>
<tr>
<td>Oxidant demand</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Ash conditions</td>
<td>Dry ash or slagging</td>
<td>Dry ash or agglomerating</td>
<td>Slagging</td>
</tr>
<tr>
<td>Size of coal feed</td>
<td>6-50 mm</td>
<td>6-10 mm</td>
<td>< 100 µm</td>
</tr>
<tr>
<td>Acceptability of fines</td>
<td>Limited</td>
<td>Good</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Other characteristics</td>
<td>Methane, tars and oils present in syngas</td>
<td>Low carbon conversion</td>
<td>Pure syngas, high carbon conversion</td>
</tr>
</tbody>
</table>
Motivation

Aims and purposes of the simulation:

• Prediction of carbon conversion and product gas composition at conditions relevant to industrial scale gasifier operation (high pressures and temperatures)

• Optimization of the gasification process and the gasifier design with focus on fuel flexibility (biomass and coal)

• Prediction of ash deposition
Motivation

Why CFD?

• Calculation of complex geometries (e.g. industrial scale gasifier)
• Taking into account turbulence models and particle tracks
• Taking into account particle radiation and particle size distribution
• Implementation of particle deposition and slagging model is possible
• Visualization of the results help to better understand the gasification process
Part I

Gasification kinetics
Modeling of the gasification process

Gasification:

“A process that uses heat, pressure and steam to convert materials directly into a gas composed primarily of carbon monoxide and hydrogen.”

Key steps in a gasification process:

- Drying
- Volatile release
- Homogeneous and heterogeneous reactions
Modeling of the gasification process

Heterogeneous reactions:

R1 (C oxidation): $C + 0.5O_2 = CO$
R2 (Boudouard): $C + CO_2 = 2CO$
R3 (Reforming): $C + H_2O = CO + H_2$

Homogeneous reactions:

R4 (Volatile oxidation): $C_{x_1}H_{x_2}O_{x_3}N_{x_4} + \left(\frac{x_1-x_3}{2}\right)O_2 = x_1CO + \frac{x_2}{2}H_2 + \frac{x_4}{2}N_2$
R5 (H$_2$ oxidation): $H_2 + 0.5O_2 = H_2O$
R6 (CO oxidation): $CO + 0.5O_2 = CO_2$
R7 (WGS): $CO + H_2O \leftrightarrow CO_2 + H_2$
Modeling of the gasification process

- **Regime I**: At low temperatures the intrinsic rate is slower than pore and bulk diffusion

- **Regime II**: The pore diffusion cannot keep up with the chemical reaction rate at increased temperatures

- **Regime III**: At high temperatures the bulk diffusion limits the overall reaction rate

\[
r = r(T, p_i, K_i, ...) \quad \left[\frac{g}{g \cdot s} \right]
\]
Modeling of the gasification process

\[R_{i,I} = A_t \cdot k_i \cdot p_{S,i}^n, \quad p_{S,i} = p_{\text{bulk}} \]

\[R_{i,II} = \eta_i \cdot A_t \cdot k_i \cdot p_{S,i}^n \]

\[R_{i,III} = \frac{12 \cdot N_i \cdot D_{M,i} \cdot M_i}{d_p^2 \cdot \rho_p \cdot R \cdot T_{\text{bulk}}} \cdot \left(p_{\text{bulk}} - p_{S,i} \right)^0 \]

C+CO\(_2\), \(p=1\text{bar} \), 30\% partial pressure CO\(_2\), \(d_p=120\mu\text{m} \), \(\rho_p=1400\text{kg/m}^3 \), Tortuosity = 3, \(A_{t_0} = 230 \text{ m}^2/\text{g} \)
Experimental facilities

- Atmospheric and pressurized entrained flow reactor
- Possible operation with N_2, O_2, H_2, CO_2, H_2O, Ar, CO
- Maximum temperature = 1800 ºC
- Maximum pressure = 50 bar
Solution strategy – Journal file

- **100 Iterations**
 - Calculation of the fluid flow with k-ε turbulence model
 - First order discretization

- **200 Iterations**
 - Including the energy equation and the radiation model (Discrete Ordinates)

- **100 Iterations**
 - Second order discretization

- **ca. 2000 Iterations**
 - Including species transport, reactions (FR-EDM) and particles (DPM, Lagrange)
 - Adjusting the under relaxation factors
Results – Stability and convergence

![Graph 1: Convergence history of Static Temperature on outlet](#)

![Graph 2: Scaled Residuals](#)

![Graph 3: Convergence history of Mass fraction of co on outlet](#)

![Graph 4: Convergence history of Mass fraction of h2 on outlet](#)
Results – Gas composition

CO CO₂ H₂ H₂O N₂ O₂ Volatiles

Reaction rate [kmol/(m³ s)]

z [m] RR1 [kmol/(m³ s)] RR2 [kmol/(m³ s)] RR3 [kmol/(m³ s)] RR4 [kmol/(m³ s)] RR5 [kmol/(m³ s)] RR6 [kmol/(m³ s)] RR7 [kmol/(m³ s)] RR8 [kmol/(m³ s)] RR9 [kmol/(m³ s)]

z [m] 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018

Mole fraction [\text{-}]

z [m] CO [-] CO₂ [-] H₂ [-] H₂O [-] N₂ [-] O₂ [-] Vol [-]

z [m] 0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018
Results – Mean values
Part II

Ash deposition
Deposition mechanisms

• **Mechanisms building depositions:**
 - Inertial impaction
 - Condensation
 - Thermophoresis
 - Chemical reactions (heterogeneous reactions with deposits)

• **Mechanisms removing depositions:**
 - Erosion (by sharp unmolten particles impacting with high mass and velocity)
 - Shedding (by gravity and weak strength)
 - Shedding (by thermally or mechanically induced stresses)
 - Melting and drip off
Experimental setup

• **Entrained flow reactor**
 - Electrically heated (up to 50 kW_{el})
 - Fuels up to 2 kg/h (or 15 kW_{th})

• **Investigations on different solid fuels under varying conditions:**
 - Temperatures (up to 1600 °C)
 - Air-fuel ratio (oxidizing or reducing)
 - Fuels (bit. coal, lignite, biomass)
 - (Oxidation medium)
Mathematical model – deposition growth

- Calculation of stationary deposition rates (sticking criterion based on TGA/DTA measurements)
- Calculation of deposit layer thickness dx for each cell
- Identification of cell nodes
- Grid modification for each cell node and adjacent cells
- Adjust thermal conductivity of underlying cell
- Iteration of fluid flow until new stationary solution with changed deposition rate and surface temperatures

$$dx = \frac{\phi_{dep} \cdot t}{\rho_{solid} \cdot (1 - \varepsilon)}$$
Mathematical model – Turbulent Dispersion

Particle trajectory is calculated by including an instantaneous value of the flow velocity (RANS-equations).

- Turbulent kinetic energy is used to calculate statistical particle trajectory
- Strong influence on particle tracks
- There are two different models available in literature: Cloud Model, Discrete Random Walk Model
Comparison of experimental results and predictions

Deposition rates [mm/h]:

Deposition photographs:
Comparison of experimental results and predictions

Prediction of deposit growth over time:

Deposit layer thickness [mm]

Flow direction

t = 0.00h

Flow direction

t = 1.25h

Flow direction

t = 2.50h
Summary

• Prediction of char conversion, gas composition and ash deposition
• Detailed modeling of heterogeneous reaction rates by means of a User Defined Function (DEFINE_PR_RATE), including several sub-models
• Good convergence by applying a journal-file-based solution strategy
• Mathematical model is able to capture deposition process and growth
• Particle diameter and deposit porosity are crucial parameters
Outlook

• Intrinsic reaction rates are needed as input parameters for each biomass or coal, in order to validate the CFD model with the lab-scale gasifiers at the Institute

• Further development of the particle reaction model:
 • More detailed devolatilization approach
 • Temperature-dependent d/ρ evolution (burning mode)
 • Detailed kinetics of WGS reaction kinetics by means of a UDF

• Particle diameter and density evolution (fragmentation, condensation)

• Validation for different parameters (temperature and air-fuel ratio), fuels
Thank you for your attention!