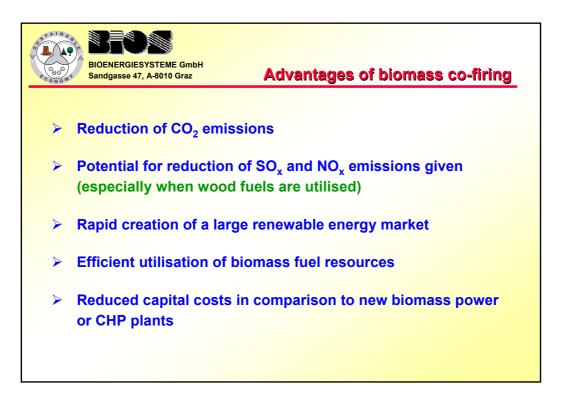
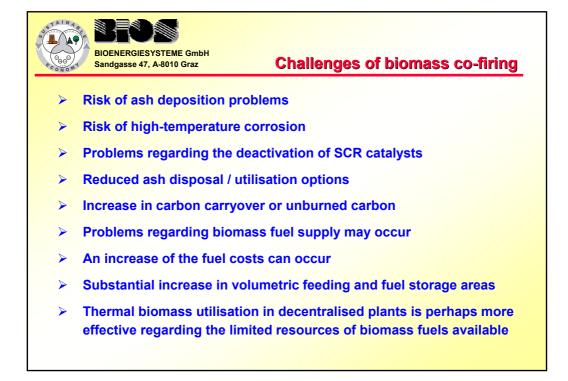
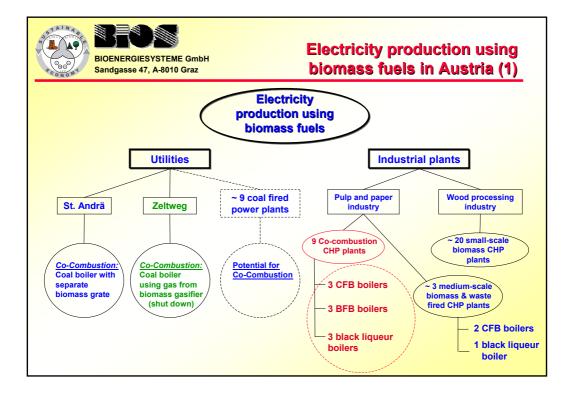
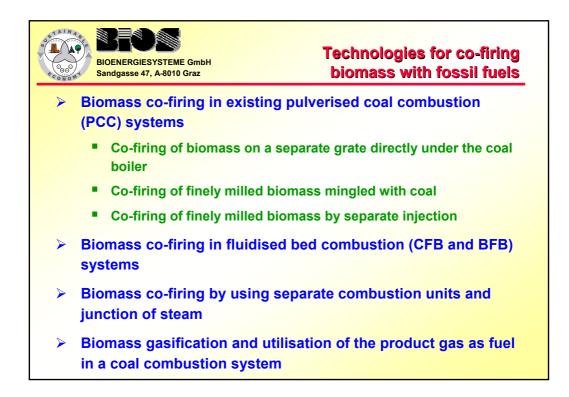

Co-firing biomass with fossil fuels – technological and economic evaluation based on Austrian experiences


Dr. Ingwald Obernberger



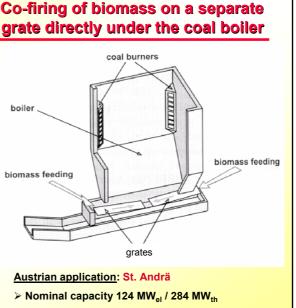

BIOS BIOENERGIESYSTEME GmbH

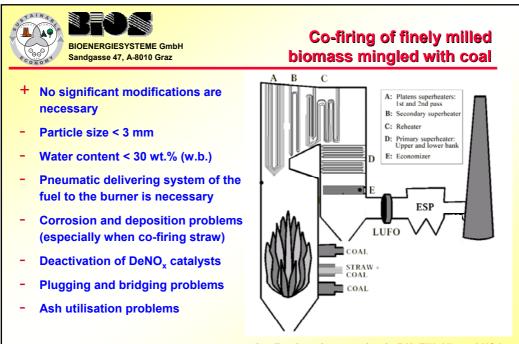
Sandgasse 47, A-8010 Graz, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: office@bios-bioenergy.at HOMEPAGE: http://www.bios-bioenergy.at


	Electricity production using biomass fuels in Austria (2)				
Utilities	GWh _{el} /a from biomass fuels				
St. Andrä	~ 7.5				
Zeltweg (shut down)	(~ 5)				
~ 9 coal fired power plants (potential for co-combustion)	~ 500				
Industrial plants					
Wood processing industry					
~ 20 small-scale biomass CHP plants	~ 100				
Pulp and paper industry					
~ 3 medium-scale biomass & waste fired CHP plants	~ 300				
9 co-combustion CHP plants	~ 1,000				
> Total electricity production in Austria:	~50,000 GWh _{el} /a				
Electricity production from thermal power plants in Austr	ria: ~14.000 GWh./a				

Description of the different co-firing technologies according to the following evaluation criteria:

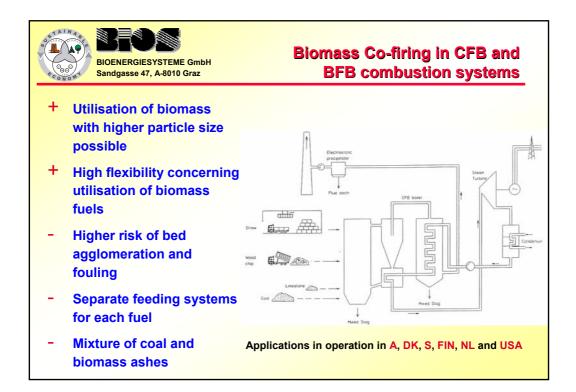
- Operating principle
- Influence of the biomass fuel on the overall system
- > State of development and experiences already achieved
- Electricity production costs


 (calculation of the electricity production costs according to the guideline VDI 2067)

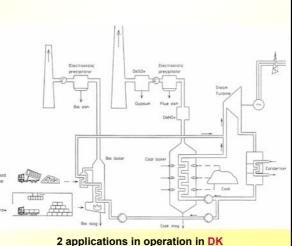


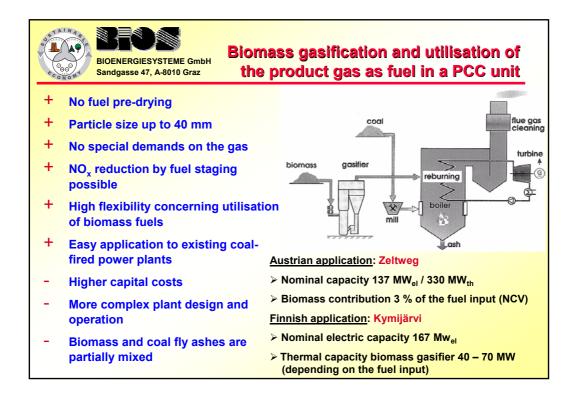
- + Large variety of biomass fuels to be used (especially regarding particle size and water content)
- + High biomass and coal carbon conversion
- Limited applicability due to space available under the boiler
- Mingled biomass and coal bottom and fly ash

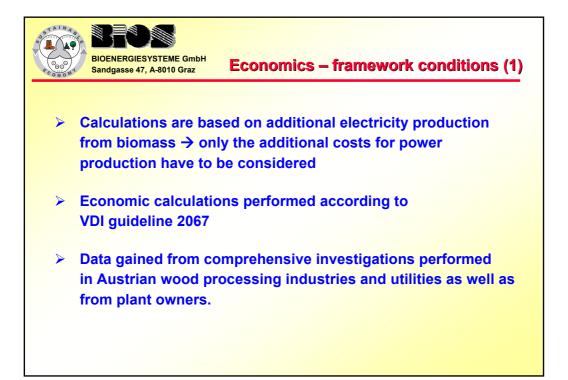
Biomass contribution 3 % of the fuel input (NCV)



Applications in operation in DK, FIN, NL and USA


Advantages and disadvantages of separate injection compared to mingled biomass and coal:


- + Optimised biomass handling and preparation due to separate storage
- + Better burner optimisation to the biomass fuel possible
- + Increased fuel flexibility
- + Increased biomass loading
- Increased capital costs
- Formation of stratified flows



BIOENERGIESYSTEME GmbH Sandgasse 47, A-8010 Graz Biomass co-firing by using separate combustion units and junction of steam Best adjustment of the

- Best adjustment of the boiler and the flue gas cleaning system to the fuels used
- + Separate utilisation of biomass and coal ashes
- + Higher steam parameters are possible
- + Smaller operating costs
- Higher investment costs
- More complex plant design

BIOENERGIESYSTEME GmbH Sandgasse 47, A-8010 Graz

Economics – framework conditions (2)

Technology			1	2	3	4	5	6	7
Technical data biomass co	-firing								
Nominal thermal capacity	P _{th}	MW _{th}	70	100	100	100	100	10	10
Gross electric capacity	P _{el}	MW _{el}	28	40	40	40	40	4.2	4.1
Full load operating hours	t _{FL}	h p.a.	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Specific internal electricity cons	umption	kW _{el} /MW _{th}	8	40	5	5	11	8	11
Investment costs									
Technical installations		1,000 €	8,000	8,700	700	17,000	7,300	500	2,300
Conveying system		1,000€	2,300	4,400	2,500	2,500	2,500	600	600
Construction work (storage, ba	se plate)	1,000 €	700	1,100	400	1,100	900	200	300
Control system		1,000 €	200	600	100	400	400	100	300
Total investment costs	Ι	1,000 €	11,200	14,800	3,700	21,000	11,100	1,400	3,500
Spezific investment costs	I/P _{el}	€/kW _{el}	400	370	93	525	278	333	854

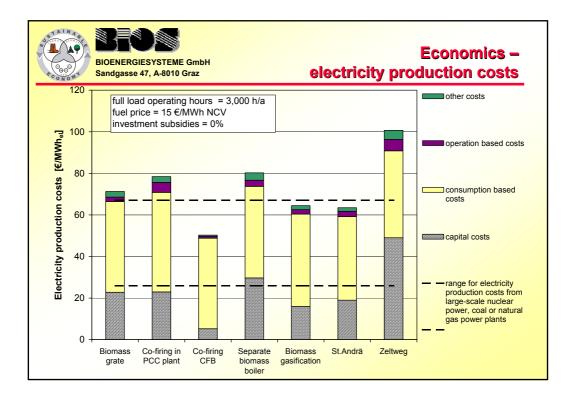
2...Co-firing in PCC plant

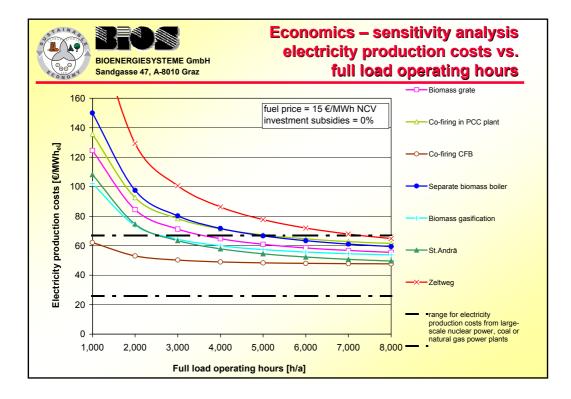
3...Co-firing CFB

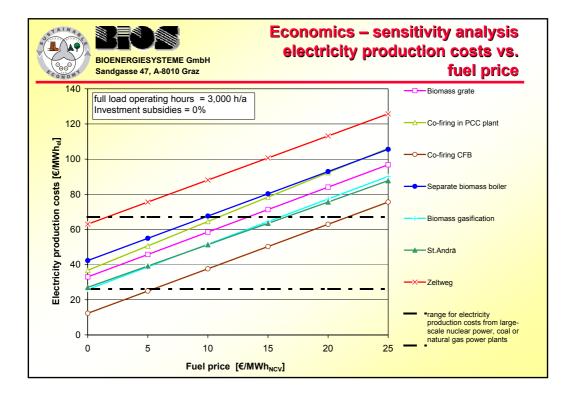
4...Separate biomass boiler

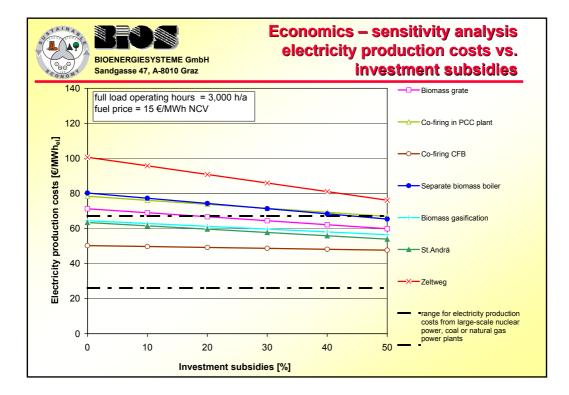
5...Biomass gasification

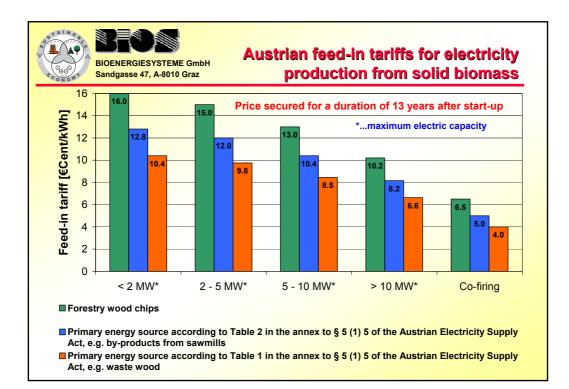
6...separate biomass grate (pilot plant St. Andrä)


7...biomass gasification (pilot plant Zeltweg)




BIOENERGIESYSTEME GmbH Sandgasse 47, A-8010 Graz


Economics – framework conditions (3)


Technology		1	2	3	4	5	6	7
Electricity production costs of the b	<mark>iomass co-firing un</mark>	it						
Capital costs								
Interest rate (real)	% p.a.	7	7	7	7	7	7	7
Lifetime co-firing unit	а	8	8	8	8	8	8	8
Consumption based costs								
Fuel price	€/MWh _{NCV}	15	15	15	15	15	15	15
Material costs at t _{FL} = 8760 h/a	(% of I) p.a.	0.5	0.5	1.0	1.0	1.0	0.5	0.5
Operation based costs								
Personal costs per hour	€/h	22	22	22	22	22	22	22
Working hours at t _{FL} = 8760 h/a	(% of 8760h) p.a.	30	70	35	45	35	10	15
Maintenance costs at t _{FL} = 8760 h/a	(% of I) p.a.	1.5	3.5	1.7	1.7	2.2	1.5	1.5
Other costs								
Administration, inssurance	(% of I) p.a.	2.0	2.0	2.0	2.0	2.0	1.5	1.5
1Biomass grate								
2Co-firing in PCC plant								
3Co-firing CFB								
4Separate biomass boiler								
5Biomass gasification 6separate biomass grate (pilot plant St	Andrä)							
7biomass gasification (pilot plant Zeltwe								

Summary (1)

- Co-firing has a high short-term potential for electricity production from biomass and therefore for a substantial reduction of CO₂ emissions (due to large plant capacities of existing power plants)
- > Several proven co-firing technologies are available
- Technical barriers can be surmounted by proper attention to boiler design, boiler operation and fuel properties
- Usually NO_x and SO_x reduction when using pure wood fuels
- Problems concerning deposition, erosion and corrosion in boilers need additional and critical research

Summary (2)

- Most importantly biomass-coal co-firing using biomass residues as a feedstock represents possibly the lowest cost and lowest risk option (for increased renewable energy production)
- Electricity production costs for the different large-scale cofiring technologies considered are between 50 and 80 €/MWh_{el} (54 – 86 US\$/MWh_{el})
- Biomass co-firing with coal is slightly more economically favourable than power production in large-scale biomass CHP plants (electricity production costs 70 to 100 EUR / MWh_{el}).

- The economy of biomass co-combustion plants is strongly influenced by the annual full load operating hours that can be achieved (> 3.000 h/a are necessary) and by the fuel price (price target: 15 €/MWh_{NCV} (16 US\$/MWh_{NCV}) and lower)
- Increased and secured feed-in tariffs for electricity from biomass co-combustion plants strongly support this technology (e.g. regulated in the new Austrian regulation for electricity

production from renewables)