Fly ash and aerosol formation in biomass combustion processes – an introduction

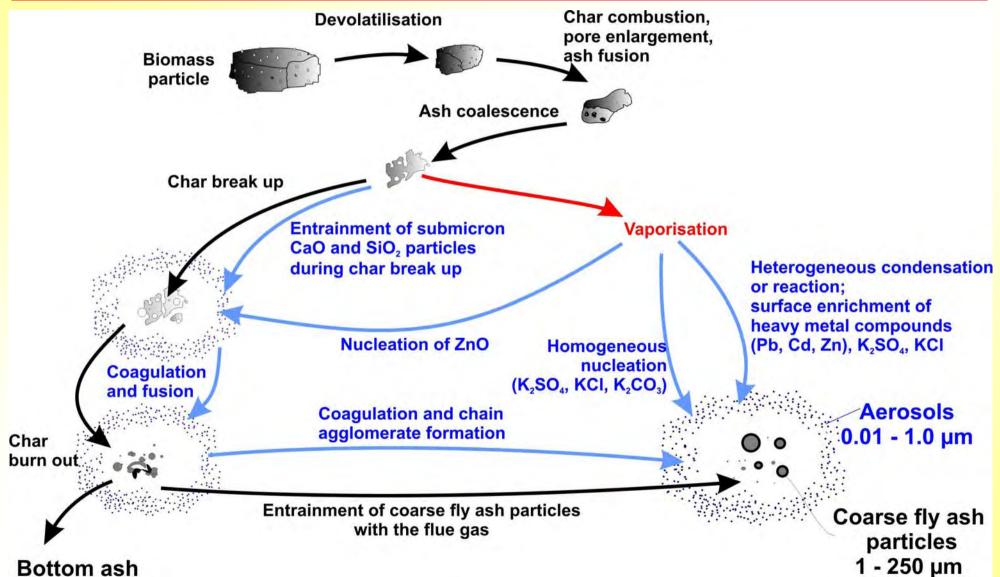
Ingwald Obernberger

Institute for Resource Efficient and Sustainable Systems
Graz University of Technology

TEL.: +43 (316) 481300; FAX: +43 (316) 4813004

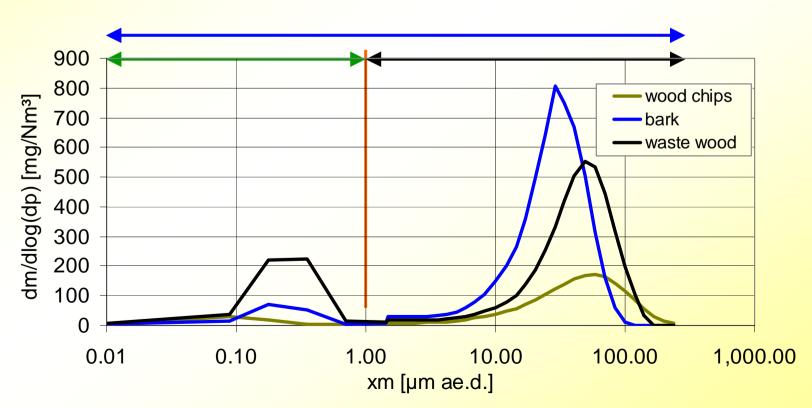
E-MAIL: ingwald.obernberger@tugraz.at

HOMEPAGE: http://RNS.TUGRAZ.AT



- Fly ash formation and characterisation during biomass combustion – overview
 - coarse fly ashes
 - aerosols
- Relevant aerosol related issues for biomass combustion that need to be addressed
 - prediction of aerosol formation
 - plant internal problems due to aerosols
 - aerosol emissions and health risks

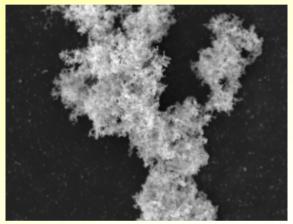
Ash formation

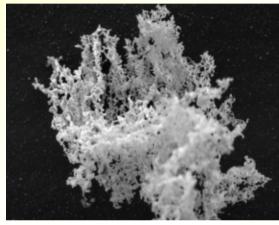


Definitions

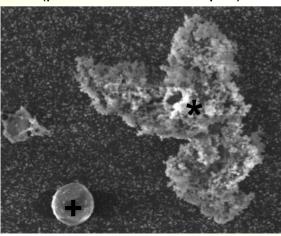
Nomenclature for particle emissions used within this presentation

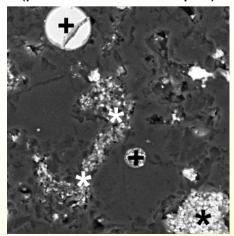
aerosols coarse fly ash fly ash the particle fraction < 1 μm particles > 1 μm total of aerosols and coarse fly ash





Coarse fly ashes – shape and chemical composition


Spruce (picture width: 20 µm)


Beech (picture width: 35 µm)

Bark (picture width: 38.2 µm)

Waste wood (picture width: 110 µm)

Spruce, beach, bark, waste wood (*):

- non volatile inorganic matrix of the biomass fuel, which has been left over after the release of the volatile compounds and a complete burnout of the charcoal
- the particles mainly consist of Ca, K and O as well as smaller amounts of Mg, P, S, Cl and heavy metals

Bark, waste wood (+)

- mineral impurities
- The particles mainly consist of Ca, Si, Mg, Al and O

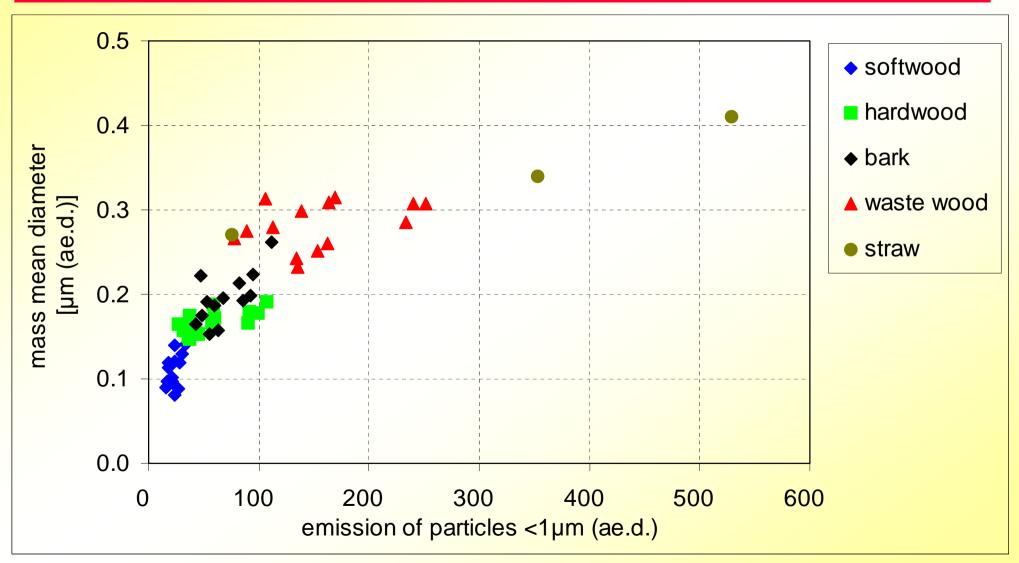
Coarse fly ashes – summary

Formation

Entrainment of ash particles from the fuel bed with the flue gas

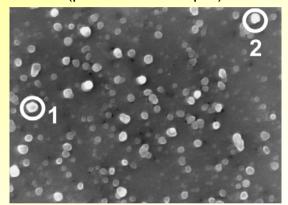
Characteristics

- > particle size: up to 250 µm (ae.d.) with a peak at 30 70 µm (ae.d.)
- concentration: from about 100 mg/Nm³ up to 1,000 mg/Nm³
- chemical composition: Ca, Si, Mg and K are the main ash matrix elements


Parameters influencing coarse fly ash formation

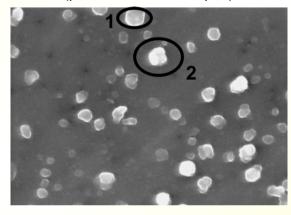
- > the characteristics of the fuel used
- > combustion technology (fixed bed, fluidised bed, entrained flow)
- > load of the combustion unit
- conditions in the fuel bed (combustion air distribution over the fuel bed, distribution of fuel over the grate)

Institute for Resource Efficient and Sustainable Systems Graz University of Technology Mass mean diameter vs. emissions

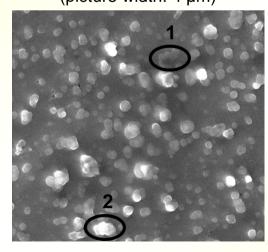


Aerosols – shape and chemical composition

Softwood (spruce)

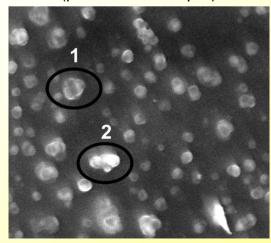

(picture width: 4 µm)

	1	2	
	atom%		
K	28.5	27.1	
Na	2.7	7.6	
S	9.0	9.2	
CI	1.6	5.4	
Zn	7.3	2.8	
0	50.4	47.8	


Hardwood (beech)

(picture width: 2.9 µm)

	1	2	
	atom%		
K	34.6	38.9	
Na	1.5	5.1	
S	9.7	5.7	
CI	5.7	8.8	
0	47.8	40.3	


Bark (picture width: 4 µm)

	1	2	
	atom%		
K	27.3	37.1	
S	8.7	4.7	
CI	18.1	34.5	
Zn	3.4	2.4	
Ca	1.3	0.0	
0	40.7	21.3	

Waste wood

(picture width: 2 µm)

	1	2	
	atom%		
K	8.7	13.1	
Na	4.4	0.0	
S	0.0	3.2	
CI	36.6	44.6	
Zn	12.6	10.4	
Pb	25.2	6.5	
0	12.6	22.5	

Aerosols – summary

Formation

Release of volatile ash forming compounds from the fuel followed by nucleation and condensation of ash vapours and subsequent coagulation of particles

Characteristics

particle size: <1 μm
</p>

concentrations: 20 - 50 mg/Nm³ (softwood)

50 - 100 mg/Nm³ (hardwood and bark)

>100 mg/Nm³ (straw, waste wood)

chemical composition: K, S, Cl, Na, Zn and Pb are the main constituents

Parameters influencing aerosol formation

➤ The amount of aerosols formed as well as their chemical composition mainly depend on the chemical composition of the biomass fuel used

Relevant aerosol related topics – prediction of aerosol formation

- Appropriate simulation models to describe vapour to solid conversion already exist
- However, the release behaviour of aerosol forming compounds as well as the governing mechanisms behind are not well known yet
- Models and secured data concerning this release behaviour represent the basis for a correct prediction of aerosol formation based on mathematical modelling
- ➤ Therefore, additional research in this field is urgently needed to increase the preciseness of aerosol formation prediction tools

Relevant aerosol related topics – Plant internal problems due to aerosols

- Aerosols from biomass combustion contain high amounts of alkali metals, S, Cl as well as varying amounts of heavy metals
- These elements and their respective compounds have comparatively low melting points
- Therefore, aerosols may influence the melting behaviour of ashes and therefore substantially contribute to deposit formation problems
- ➤ For fuels like straw and waste wood, the high Cl-content of the aerosols may additionally cause corrosion problems

Relevant aerosol related topics – aerosol emissions and health risks

- Aerosol precipitation demands for highly sophisticated and therefore costly technologies such as ESPs and baghouse filters
- Especially for small-scale combustion units appropriate low-cost aerosol precipitation devices are needed but not yet commercially available
- > No standard procedures for aerosol characterisation are available
- The impact of particulates on the human organism increases with decreasing particle size
- Consequently, aerosol fractions are predestined to contribute to health risks
- ➤ However, actually only few information about the health risks of aerosols from biomass combustion compared with fine particulate emissions from other sources is available