

COAL-BIOMASS COFIRING

PRACTICAL CONSIDERATIONS

Larry Felix Southern Research Institute

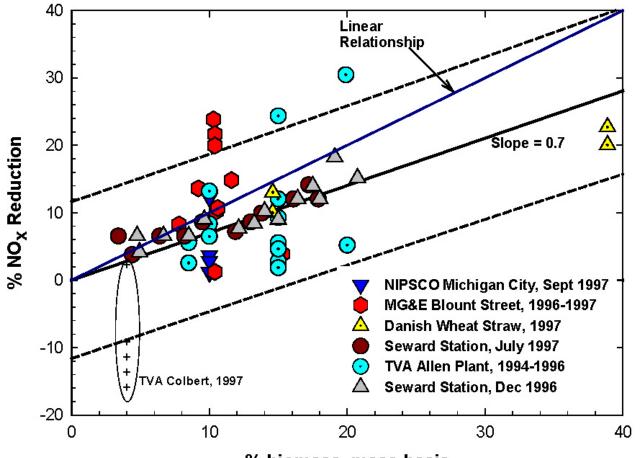
Why Biomass Cofiring?

- Cofiring Helps to Reduce SO₂ and NO_X Emissions Legislatively Targeted for Reduction
- Renewable Energy may be Mandated at a percentage of a Utilities Energy Output
- U.S. Tax Advantages for the Production of Energy from Renewable Fuels
- Climate Protection Global Warming

US Consensus

"The addition of biomass has been shown to reduce NO_{x} emissions in most commercial facilities, usually beyond the reductions expected because of a lower overall fuel-bound nitrogen content. The high volatiles content of biomass can effectively establish a fuel-rich zone early in the flame that can reduce NO_x emissions. Adding biomass can reduce flame temperatures, leading to lower levels of thermal NO_{x} . The high moisture content of some biomass may also be effective for NO_x reduction at full-scale."¹

¹ Dayton, David, A Summary of NO_X Emissions Reduction from Biomass Cofiring, DOE Contract DE-AC36-99-GO10337, NREL/TP-510-32260, National Renewable Energy Laboratory, Golden CO, May, 2002, p.3


Full-Scale Experience in the US

Plant	Biomass	%	NO _X Result	Reference
Hammond	Wood	13	No effect	Boylan, et al., 1992
Kraft	Wood	0-30	Reduced > fuel N	Boylan, et al., 1994
Greenidge Station	Dry wood	10	No effect	Prinzing et al, 1996
Greenidge Station	Wet wood	10	Reduced	Prinzing et al, 1996
Madison Gas & Electric	Switchgrass	14	No to slight effect	Ragland et al, 1996
Allen Fossil Plant	Wood	0-20	Reduced > fuel N	Tillman et al, 1996
Sandia Pilot	Wood, switchgrass	0-66	Reduced \propto to fuel N	Baxter and Robinson, 1999
Seward, Allen, Michigan City	Wood	0-20	Reduced < fuel N on average	Tillman, Plasynski, and Hughes, 1999
Gadsden	Switchgrass	10	No effect	Boylan, 2001
Colbert	Wood	1-5	Up to 16% Increase	Dayton, 2002

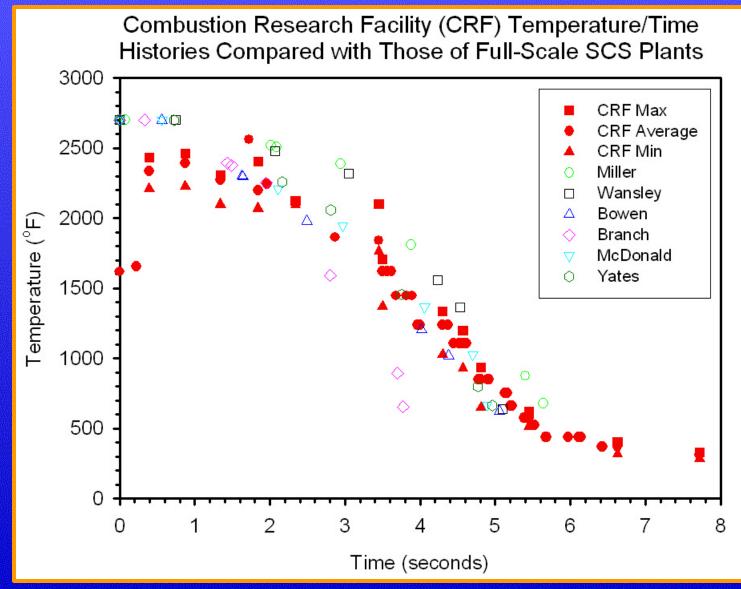
US Results – Mass Basis (Dayton – NREL, May 2002)

Summary of NO_x Reduction from Biomass/Coal Cofiring

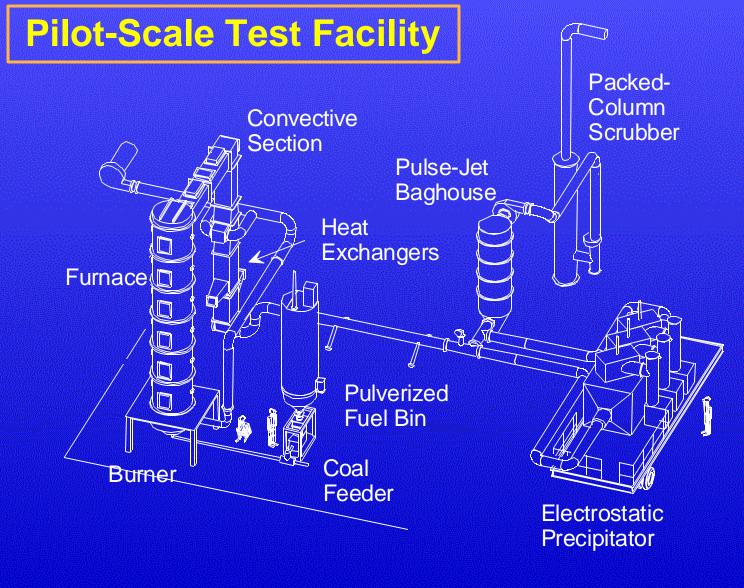
% biomass, mass basis

A summary of NOx reduction from a number of biomass/coal cofiring full-scale and pilot-scale demonstration tests, based on the mass input of biomass. Dashed lines are 95% prediction limits that encompass the range of variability in the measured data.

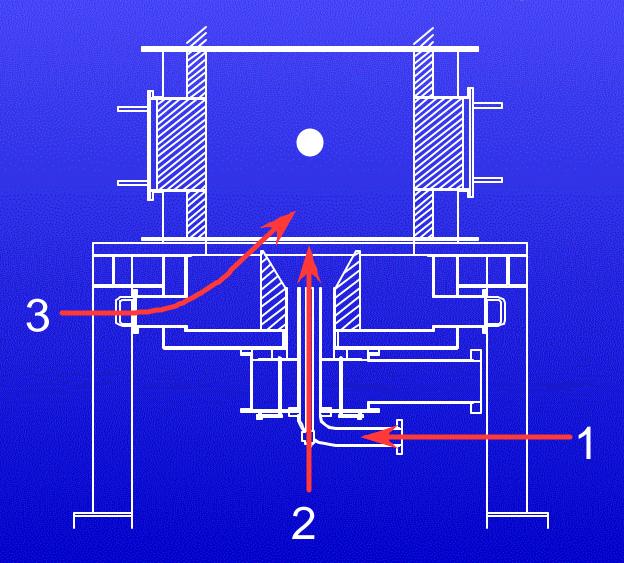
At the Pilot Scale

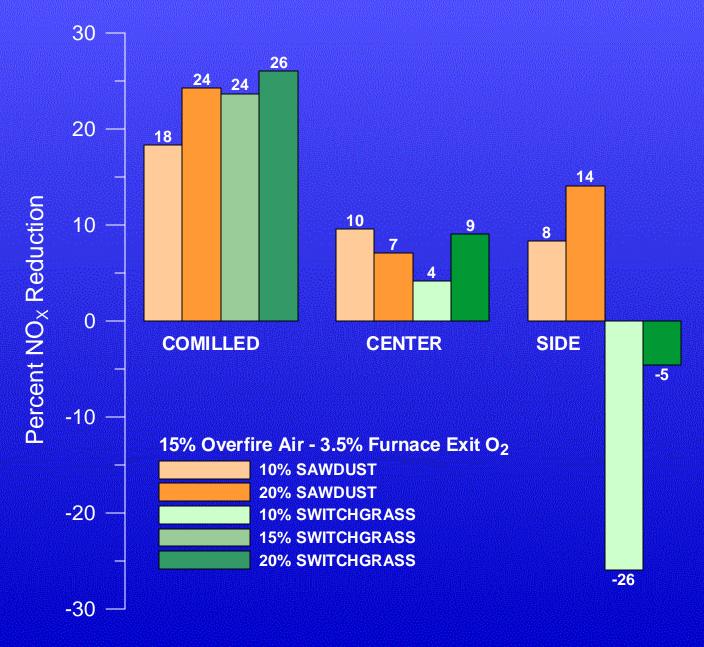

Joint IEA/EPRI Biomass Workshop

Slide 6


Combustion Research Facility

- All testing conducted at the SRI/SCS 6.0 MMBtu/hr Combustion Research Facility (at 3.5 MMBtu/hr)
- Continuous measurement and logging of ~ 200 pertinent process parameters
- In-situ testing for mass emissions, particle size, char, pyrometry, ash resistivity, gases (O₂ at furnace exit and at CEM location, CO, CO₂, SO₂, NO_X, NH₃, H₂O, HCl).
- On-site wet chemical flue gas and ash analyses, CHN (for carbon in ash), fuel heat value measurement
- Instrumented CE-Raymond Model 352 Deep Bowl mill





Locations for Biomass Injection

Joint IEA/EPRI Biomass Workshop

Southern Research Institute

Milling Coal and Biomass

SRI / SCS

CE-Raymond Model 352 Deep Bowl Mill

Analyses of Fuels

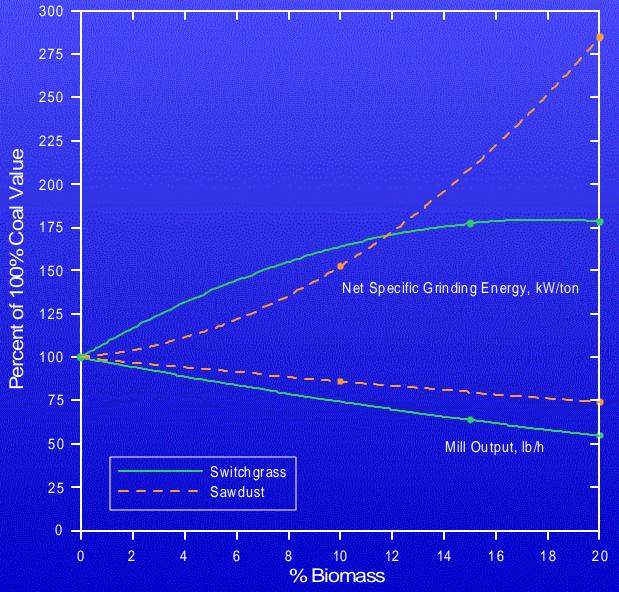
ANALYSIS	COAL	BIOMAS	SS	
PROXIMATE (As Received)	Eastern hv bit. Pratt Seam	Switchgrass Field Chopped	Sawdust Red Oak	
MOISTURE, %	2.64	15.18	3.11	
ASH, %	16.08	29.53	0.52	
VOLATILE, %	33.14	47.69	82.45	
FIXED CARBON, %	48.14	7.60	13.92	
SULFUR, %	1.47	0.21	0.01	
HEAT VALUE, Btu/lb	12760	5891	8017	
ULTIMATE (Dry)				
CARBON, %	69.53	36.59	48.97	
HYDROGEN, %	4.64	3.50	6.09	
NITROGEN, %	1.60	1.59	0.15	
SULFUR, %	1.51	0.25	0.01	
ASH, %	16.52	34.82	0.54	
OXYGEN, % (DIFF)	6.20	23.25	44.24	
CHLORINE, %	0.01	0.10	0.01	

MILLING COAL AND BIOMASS-1

		COAL	SAWDUST		SWITCHGRASS	
MILLING RATES	UNIT	Pratt Seam	10%	20%	15%	20%
Net Coal Added to Bins	lb/h	1052.0	626.5	652.8	358.8	265.5
Coal Burned	lb/h	0.0	278.6	126.2	311.3	309.5
Fuel Heat Value	Btu/lb	12760	12323	12085	12089	11911
Mill Output	lb/hr	1052.0	905.1	779.0	670.0	574.9
Mill Rejects	lb/h	30.0	25.2	24.4	19.0	15.1

MILLING COAL AND BIOMASS - 2

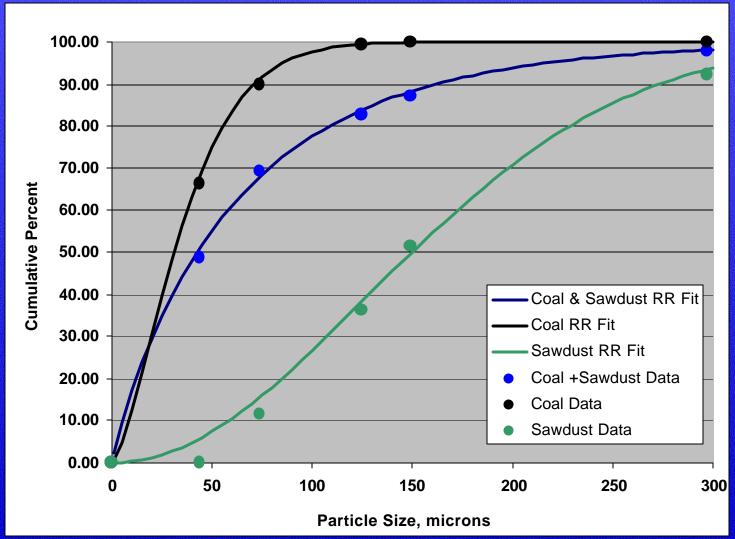
		COAL	SAWDUST		SWITCHGRASS	
AVERAGES	UNIT	Pratt Seam	10%	20%	15%	20%
Mill Current	Amps	43.2	45.5	51.2	44.1	43.0
Drying Natural Gas	scfh	112.0	100.2	63.5	66.0	82.1
Mill Inlet Temperature	°F	185.2	179.9	172.6	161.8	176.3
Mill Outlet Temperature	°F	145.0	145.1	145.0	135.1	145.0
Mill Exit Gas Flow	ACFM	2259	2260	2261	2260	2259
Mill Exit Gas Flow	SCFM	1965	1961	1959	1989	1952
∆P at Mill Inlet	in. H2O	-0.25	-0.25	-0.24	-0.25	-0.25
O ₂ at Mill Inlet	%	16.9	17.2	18.2	11.7	12.7
Mill Spring Pressure, West	lbs	1259	2358	3614	2163	2057
Mill Spring Pressure, East	lbs	3786	5665	8006	5048	4842
Journal Lift, West	in.	0.16	0.18	0.18	0.17	0.20
Journal Lift, East	in.	0.16	0.18	0.18	0.17	0.18
Hardgrove Grindability	no unit	49.0	N/A	N/A	N/A	N/A



MILLING COAL AND BIOMASS - 3

		COAL	SAWDUST		SWITCHGRASS	
CALCULATED ENERGY USAGE	UNIT	Pratt Seam	10%	20%	15%	20%
Fuel Heat Value	Btu/lb	12760	12323	12085	12089	11911
Mill Output	MBtu/hr	13.4	11.2	9.4	8.1	6.8
Specific Grinding Energy, gross	kW/ton	24.7	30.2	39.8	39.7	45.0
Specific Grinding Energy, net	kW/ton	3.79	5.78	10.81	6.73	6.76
Specific Drying Energy	Btu/lb	113.0	117.4	86.2	105.4	151.9
Specific Grinding Energy, gross	kWh/MBtu	0.97	1.23	1.65	1.64	1.89
Specific Grinding Energy, net	kWh/MBtu	0.15	0.23	0.45	0.28	0.28
Specific Drying Energy	Btu/MBtu	8857	9530	7133	8715	12752
Hardgrove Grindability	no unit	49.0	N/A	N/A	N/A	N/A

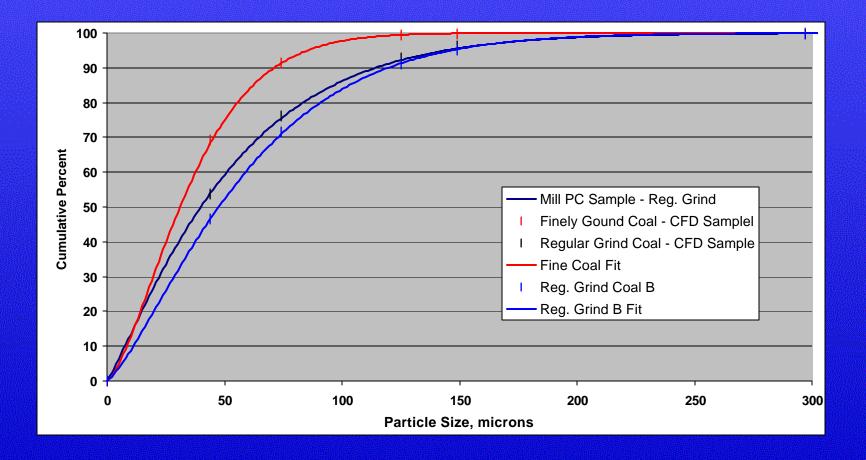
Biomass Comilled with HV Bituminous Coal

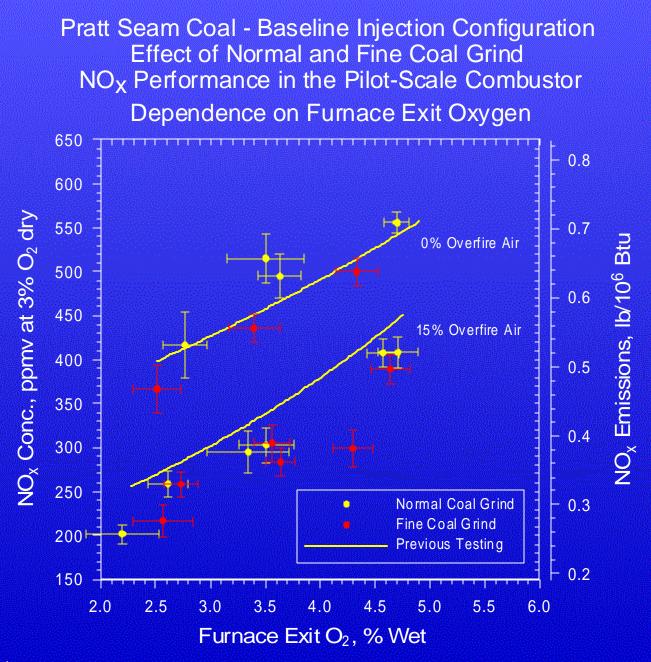


Joint IEA/EPRI Biomass Workshop

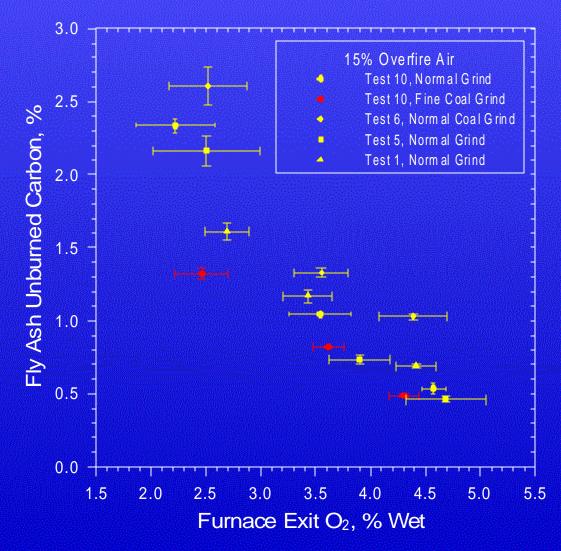
Size Distributions

80% Pratt Seam Coal - 20% Sawdust




Is it the Biomass OR Does Coal Particle Size Affect NO_X and/or UBC Emissions?

Regular Grind (70% < 200 mesh) and Fine Grind Coal



Slide 22

Pratt Seam Coal - Comilling Configuration Effect of Normal and Fine Coal Grind Unburned Carbon Performance in the Pilot-Scale Combustor

With Comilling, NO_x and UBC Emissions are Apparently Unaffected by More Finely Ground Coal ~90% <200 mesh

