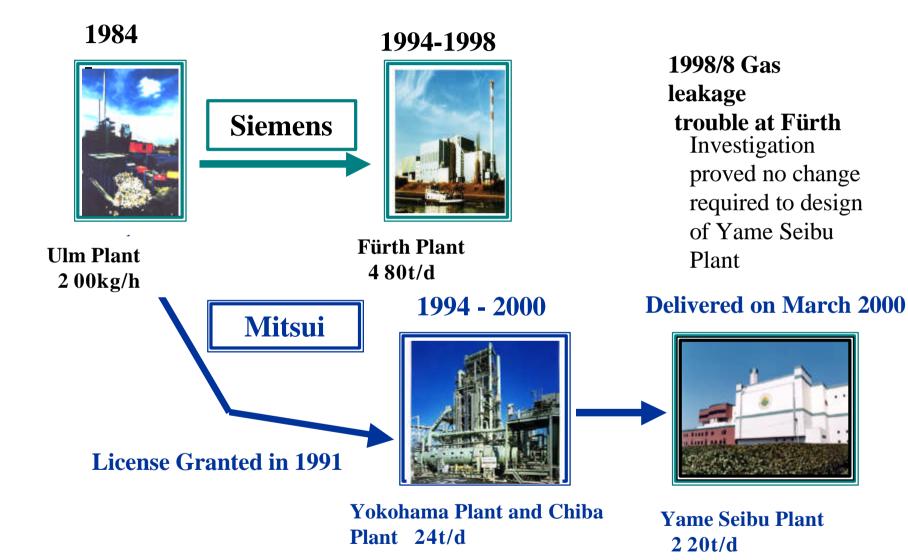
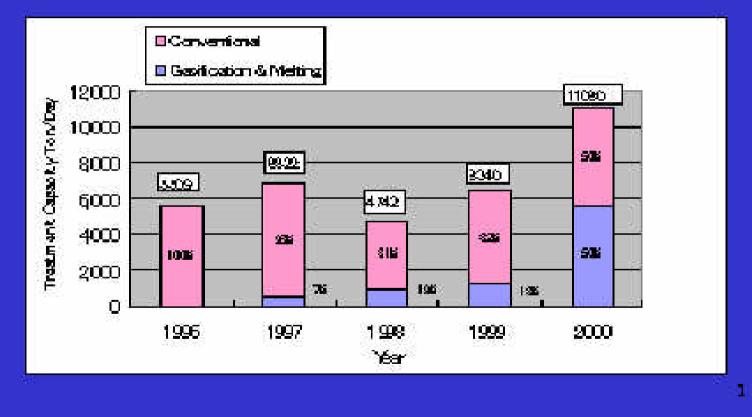


Mitsui Recycling

Pyrolysis Gasification & Melting Process



T oyohashi R21 Plant


Development History of R21

Mitsui Recycling 21

Trend of Japanese Incinerator Market

- Order Record of MSW Incinerator in Japan -

Construction Record of R21

Mitsui Recycling 21

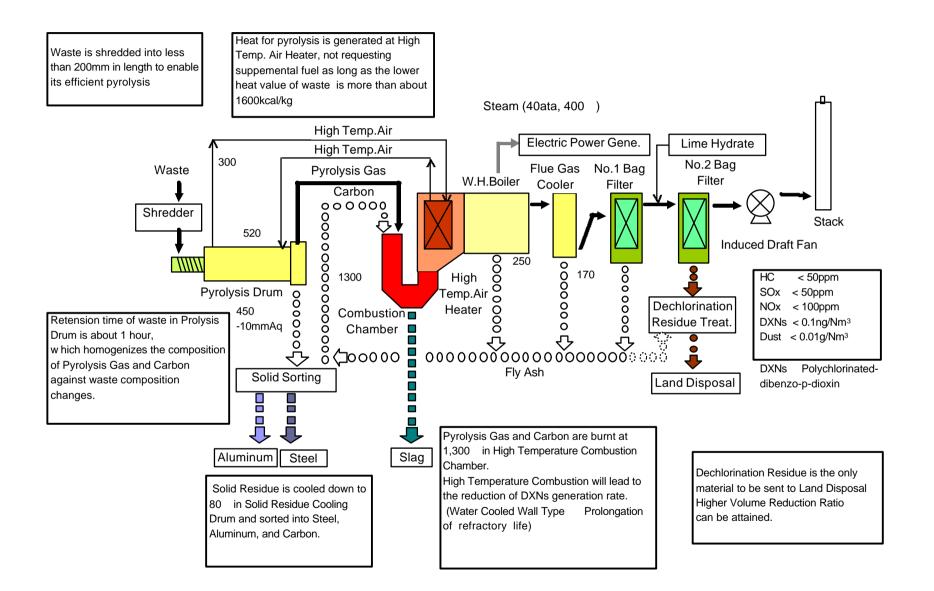
For: Yame Seibu Regional Administrative Association 110 ton/day 2 rains Start Const. 1997 Completed March 2000

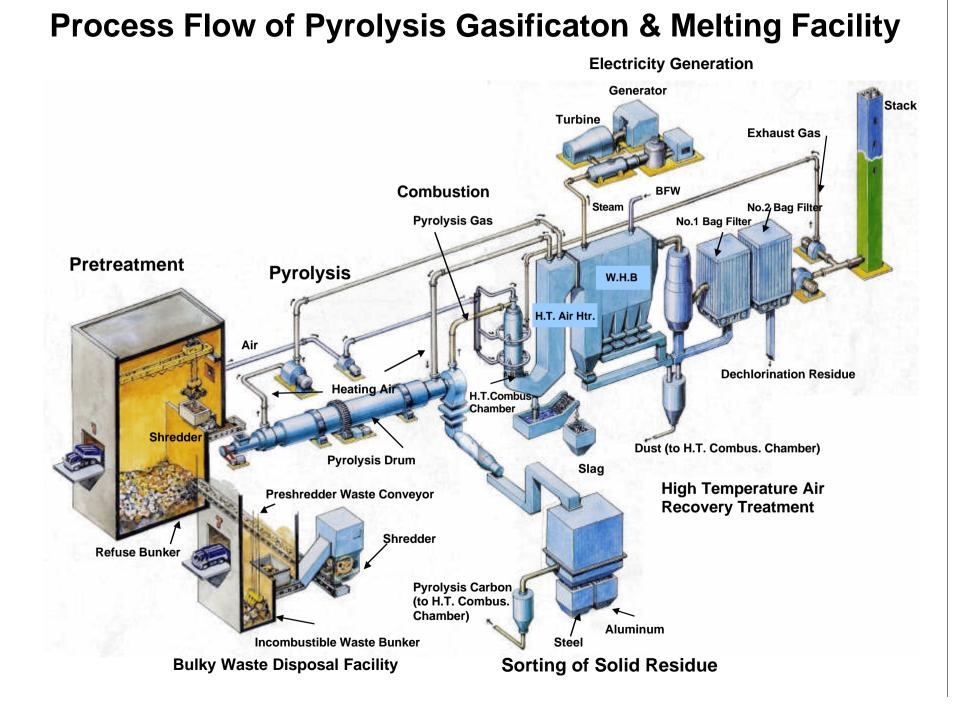
For: Toyohashi City 200 ton/day 2 trains Start Const. 1998 Completed March 2002

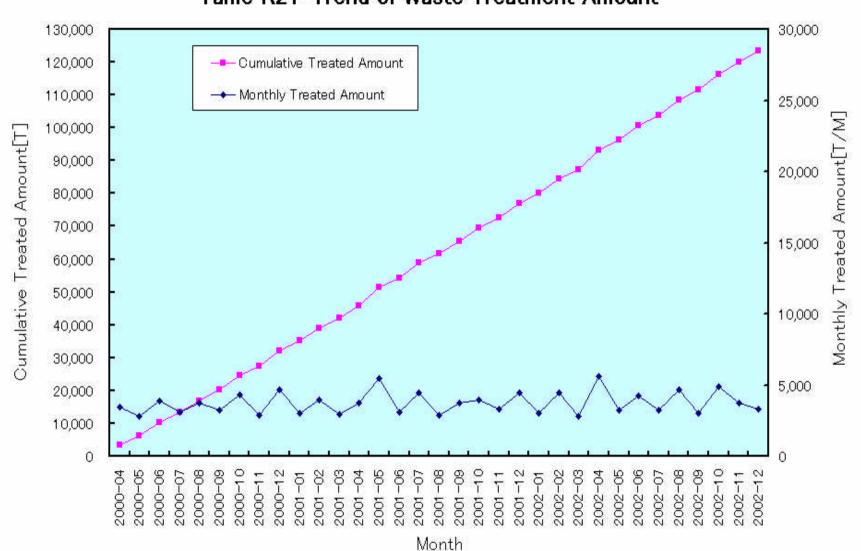
For: Ebetsu City 70 ton/day 2 trains Start Const. 2000 Completed Nov. 2002

For: Koga City and One City, Four Towns' Waste Disposal Cooperative 130 ton/day 2 trains Start Const. 2000 Completed March 2003

Owner: Nishi Iburi Regional Union Operator: Nishi Iburi Kankyo Co. Ltd 105 ton/day 2 trains Start Const. 2001 Completed March 2003

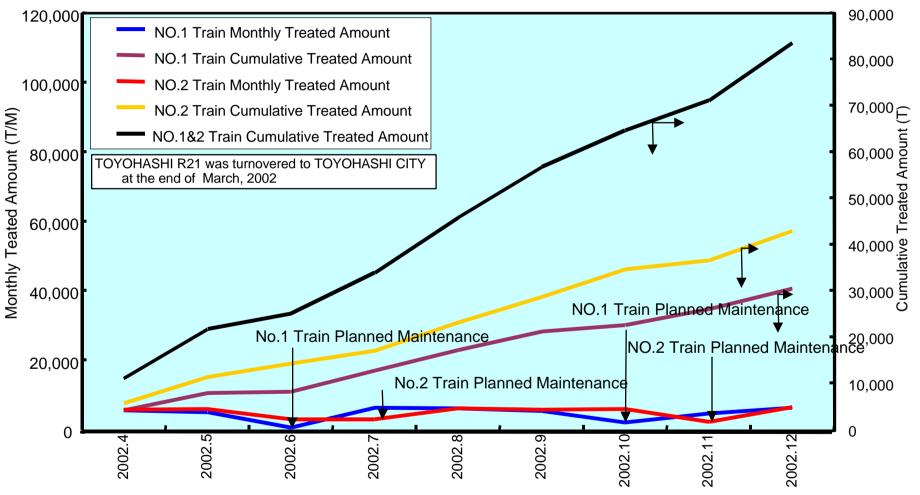

For: Kyohoku Regional Administrative Association 80 ton/day 2 trains Start Const. 2001 Completed March 2003

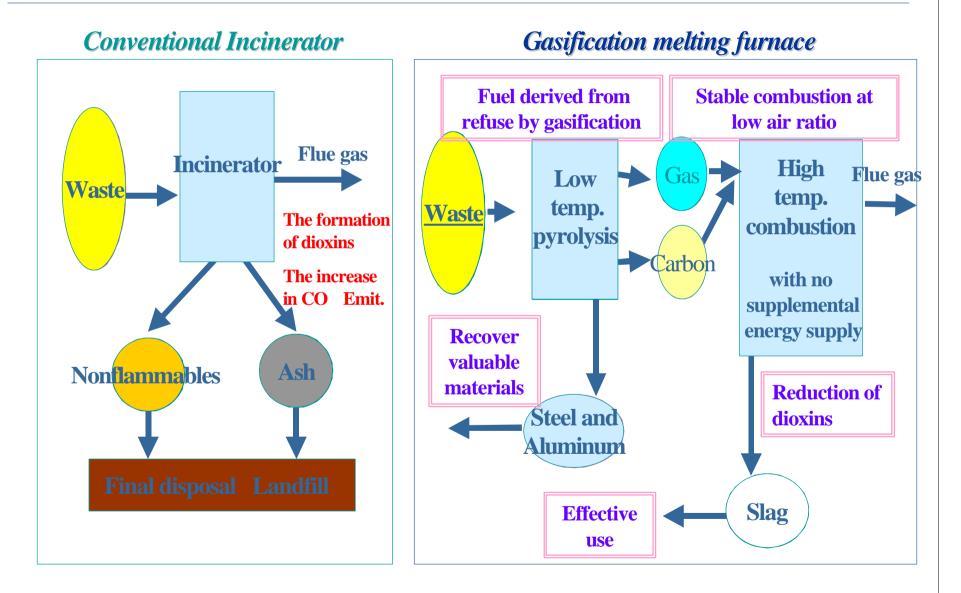

R21 Projects Status as of May 20, 2003

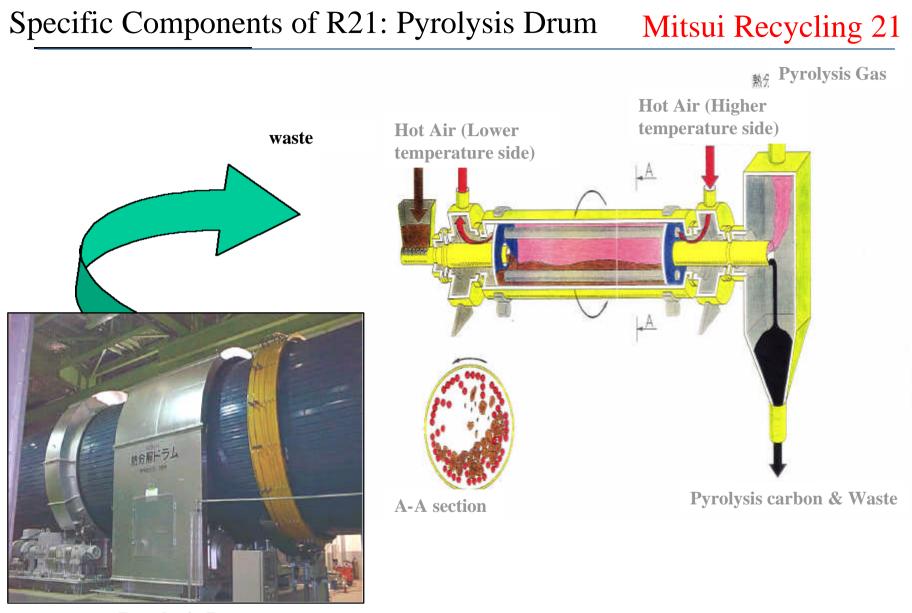

Facility	Yame Seibu R21	Toyohashi R21	Ebetsu R21	Koga Seibu R21	Nishiiburi R21	Kyouhoku R21
Current Status as of May 20, 2003	Yame R21 has been under commertial operation for more than 3 years without any critical troubles. Yame R21 is the first pyrolysis gasfication and melting facility in Japan which was turnovered in March, 2000.	Toyohashi R21 has been commertially operated steadily for more than 1 year, which was turnovered in March 2002.	Ebetsu R21 was turnovered in November, 2002 and has been under steady commertial operation.	performance guarantee operation	Nishilburi R21 was turnovered at the end of March, 2003 after the performance guarantee operation successfully completed on March 8, 2003.	Kyouhoku R21 was turnovered on March 15, 2003 after the performance guaranty operation at the end of January 2003.
Contract Date	July 7,1997	September 27,1998	September 26, 2000	November 4, 2000	January 15, 2001	March 26, 2001
Turnover Date	March 31, 2000	March 15, 2002	November 30, 2002	March 31, 2003	March 31, 2003	March 15, 2003
Plant Capacity						
R21	110t/d x 2Trains(220t/d Total)	200t/d x 2Trains(400t/d Total)	70t/d x 2Trains(140t/d Total)	130t/d x 2Trains(260t/d Total)	105t/d x 2Trains(210t/d Total)	80t/d x 2Trains(160t/d Total)
Bulky Waste Treatment	50t/d (5 hour operation per day)	70t/d (5 hour operation per day)	35t/d (5 hour operation per day)	Not installed	57t/d (6 hour operation per day)	Not installed
Waste LHV for Plant Design						
High (kcal/kg)	2400	3000	3200	2580	3100	2750
Middle (kcal/kg)	1600	2300	2400	1580	2300	1900
Low (kg/kg)	1000	1200	1500	960	1500	1100
Flue Gas Cleaning Method	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter)	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter + Catalytic Reactor)	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter + Catalytic Reactor)	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter)	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter)	Dry Type Gas Cleaning Method (Dust Removal Bag Filter + Dechlorination Bag Filter)
Stack Flue Gas Limitation for Plant Design (*1)						
DXNs (ng-TEQ/Nm3)	<0.1	<0.01	<0.05	<0.05	<0.1	<0.1
HCI (ppm)	<50	<40	<61	<100	<50	<25
SOx (ppm)	<50	<25	<395	<100	<50	<20
NOx (ppm)	<100	<50	<50	<100	<100	<100
CO (ppm)	<10	<30	<30	<30	<30	<30
Dust (g/Nm3)	<0.01	<0.02	<0.01	<0.02	<0.02	<0.02
Generated Steam	40ata, 400deg.C	40ata, 400degC	30ata, 300deg.C	40ata, 400deg.C	30ata, 300degC	30ata, 300deg.C
Type of Steam Turbine Generator	Extraction Turbine	Extraction Turbine	Extraction Turbine	Extraction Turbine	Condensing Turbine	Condensing Turbine
Electric Power Generated (Rated)	1950kW	8700kw	1980kW	4500kW	1980kW	1500kW

(*1) Base on Dry Gas 12%02

Toyohashi R21 Process Flow

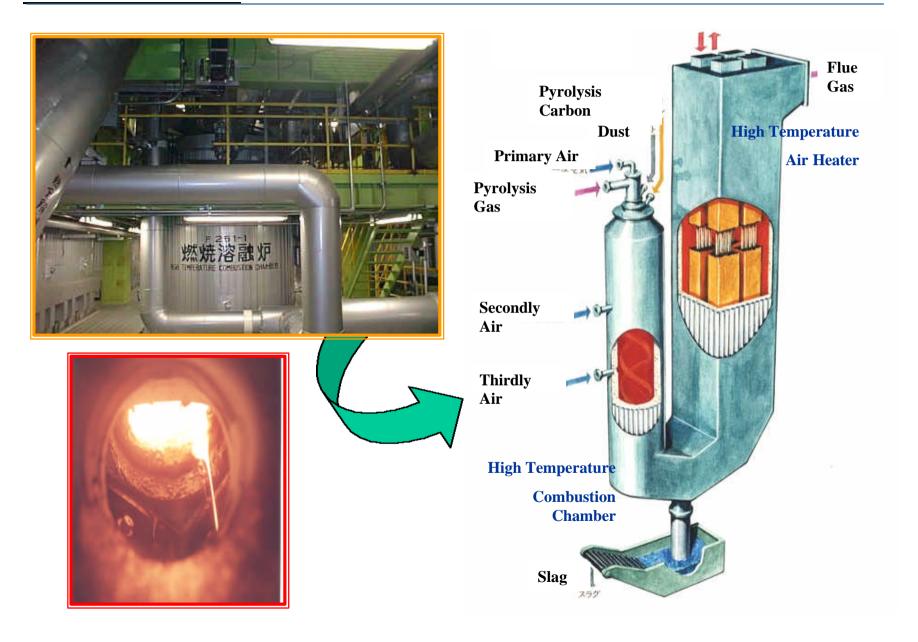



Yame R21-Trend of Waste Treatment Amount


TOYOHASHI R21 Trend Data on Treated Amount of Waste

Time

Next generation of the waste treatment facilities Pyrolysis Gasification & Melting Process



Pyrolysis Drum

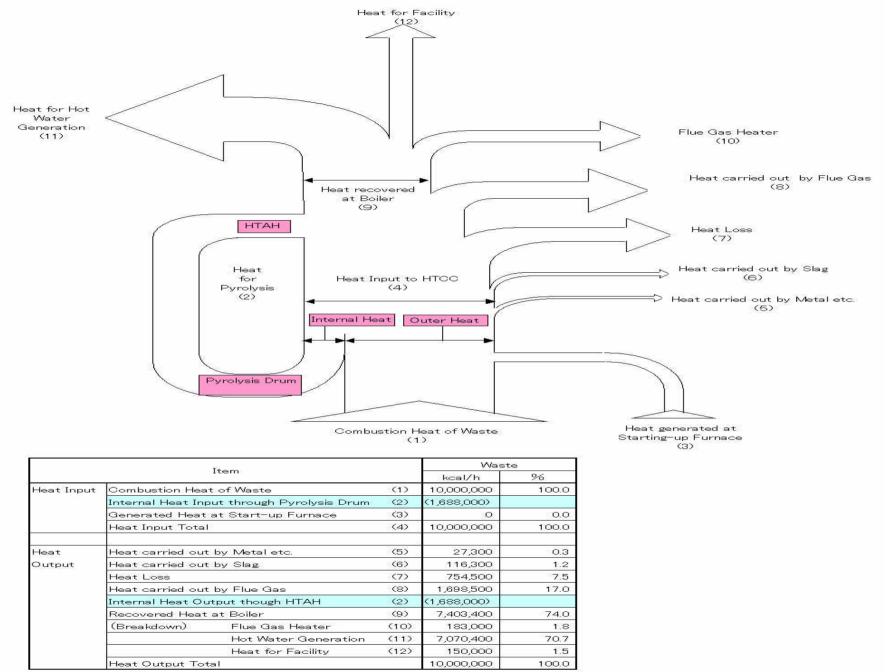
Specific Components of R21: Furness and Air Heater

Mitsui Recycling 21

Operation Results of Yame Seibu Clean Center Emission level:Guarantee vs Actual

Items	Regulatory Standard	Guaranteed Value	Actual 2002 Average	
Hcl	430 ppm	50 ppm	ND	
SO x	500 ppm	50 ppm	ND	
NO x	250 ppm	100 ppm	47 ppm	
со	100 ppm	10 ppm	0~1 ppm	
Dust	0.04 g/m3N	0.01 g/m3N	ND	
DXNs	1 ng-TEQ/m3N	0.1 ng-TEQ/m3N	0.007 ng-TEQ/m3N	

TOYOHASHI R21 Flue Gas Emission Data


NO.1 Train

	Unit	Design Limit	Actual Data (*1)				
\sim			Apr. 22	May 22	May 23	Aug. 19	Oct.8
Dust	g/Nm3	<0.02	<0.001	<0.001	<0.001	<0.001	<0.001
SOx	ppm	<25	5.9	7.6	10	3.6	2.9
HCI	mg/Nm3	<65 (*2)	34	50	22	39	34
NO×	ppm	<50	24	32	27	20	14
DXNs	ng-TEQ/Nm3	<0.01	-	0.0046	0.0018	()	

NO.2 Train

	Unit	Design Limit	Actual Data (*1)				
			Apr. 24	May 20	May 23	Aug. 20	Oct. 9
Dust	g/Nm3	<0.02	<0.001	<0.001	<0.001	<0.001	<0.001
SOx	ppm	<25	10	4.9	7.5	1.7	4.2
HCI	mg/Nm3	<65 (*2)	43	24	33	37	41
NO×	ppm	<50	30	33	32	12	34
DXNs	ng-TEQ/Nm3	<0.01		0.0013	0.0039	-	-

Remark 1 : Based on 12%O2 Dry Gas Remark 2 : Corresponding to 40 ppm

(Remark) Combustion Heat of Waste \Rightarrow 100%

Operation Results of Yame Seibu Clean Center <u>Utility Cost</u>

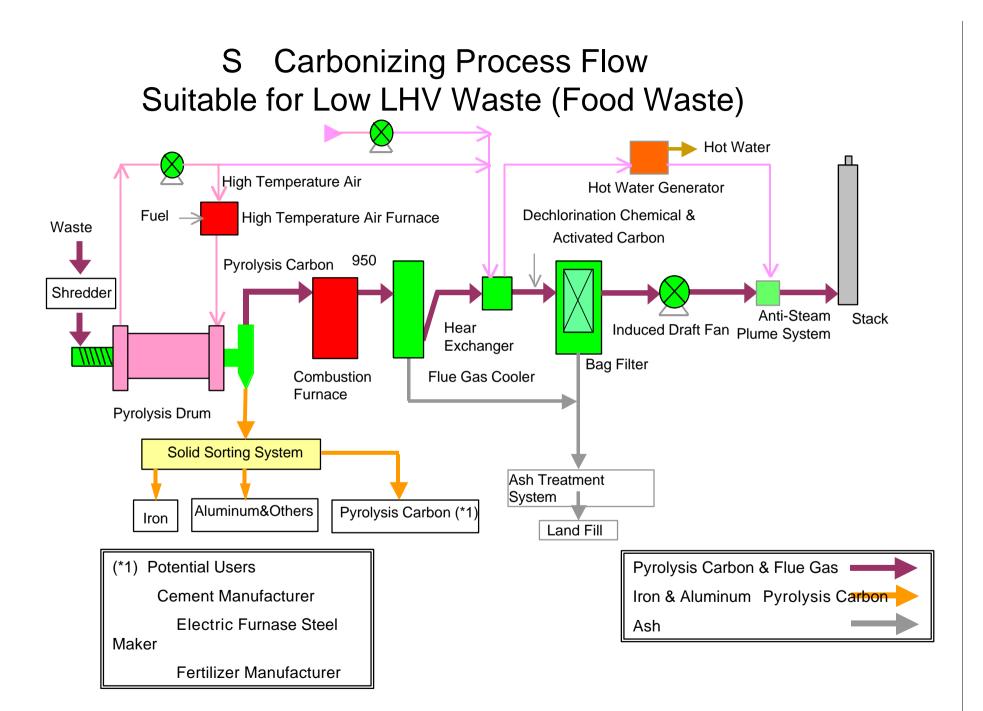
F iscal Year	2000	2001	2002	
Fuel	830 Yen/ton	1060 Yen/ton	1000 Yen/ton	
E lectric	990 Yen/ton	890 Yen/ton	700 Yen/ton	
Chemicals	1540 Yen/ton	870 Yen/ton	1090 Yen/ton	
Water 30 Yen/ton		30 Yen/ton	30 Yen/ton	
Total 3400 Yen/ton		2800 Yen/ton	2800 Yen/ton	

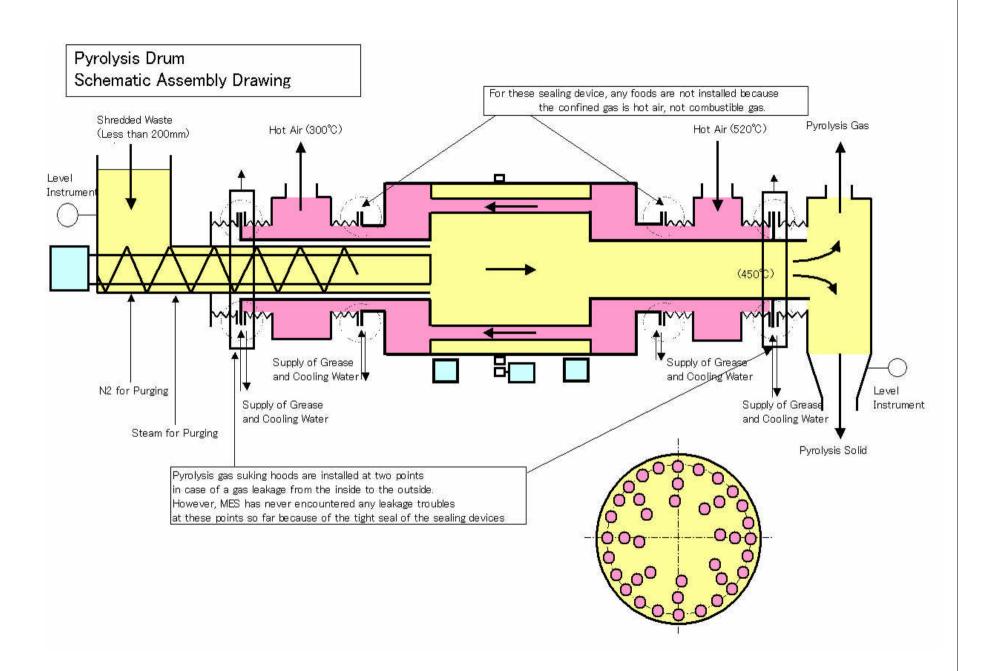
Recovery of valuable resources

Non-oxidized steel, non-molten aluminum : Reuse

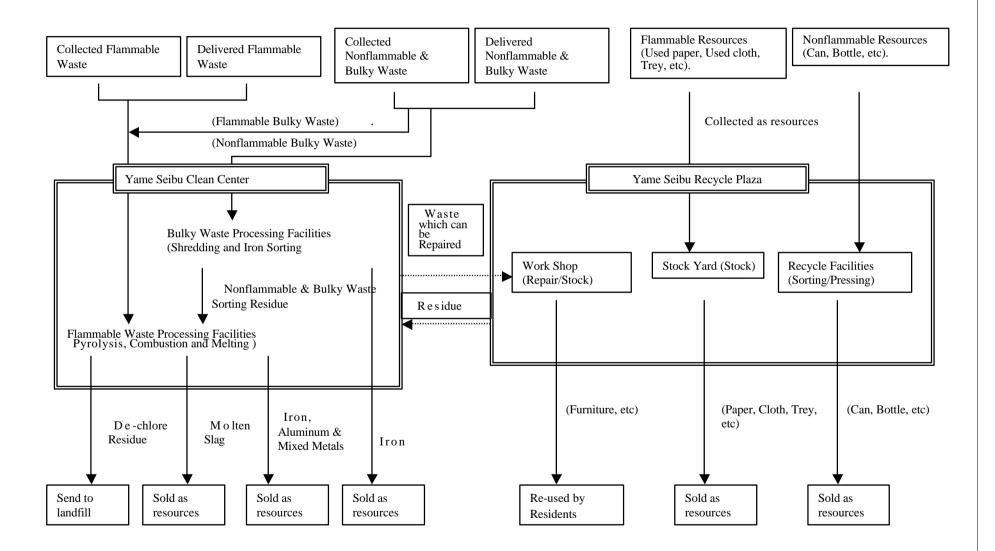
Yame C.C. Metals: Confirm the recovery of high quality steel and aluminum, sold out at the market price

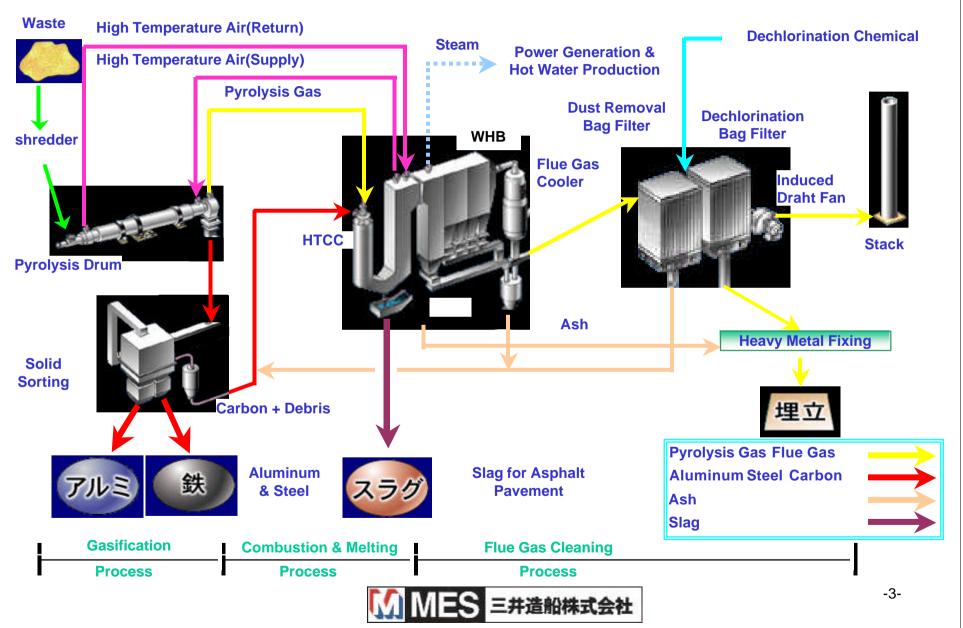
Slag: Reuse as a asphalt composite material Yame C.C. Slag: Meeting the requirements of the Environmental Notice No.46 for elusion test as the soil fit for agricultural use NIPPON HODOO Co., Ltd. receives the slag as the asphalt composite material at the market price.




	unit	Gasification & Ash-melting	Conventionals	Conventionals Ash-melting
initial cost		120 150	100	150
running cost		120 150	100	150
maintenance cost		120 150	100	150
number of operator		100	100	150
plant area		120 150	100	150
recycle material		Fe, Al, slag		slag
volume reduction ratio		1/100 1/150	1/10 1/30	1/50 1/00
dumping material		salt, part of ash *1	salt, ash,	salt, part of ash,
			unburnables	unburnables
content of flue gas				
Nox	ppm	100 150	100 150	100 150
Sox	ppm	30 50	30 50	30 50
Hc	ppm	50 100	50 100	50 100
Dust	g/Nm ³	0.1	0.1	0.1
Со	ppm	10	50	50
Dxn				
gas side	ng-TEQ/Nm ³	0.1	0.1	0.1
solid side	ng-TEQ/g	0.1 0.5	15	12
total discharge rate	ì g-TEQ/t-waste	15	10 50	10 30

Comparison between conventionals and new process


*1 MES is developing new technology that salt and part of ash are not necessary to be dumped.



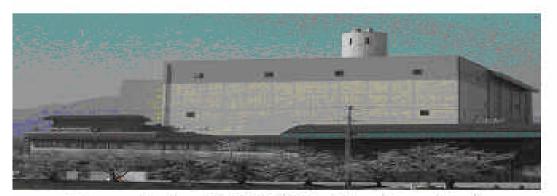
Waste Treatment System of Yame Seibu Regional Administrative Association

Pyrolysis Gasification & Melting Process

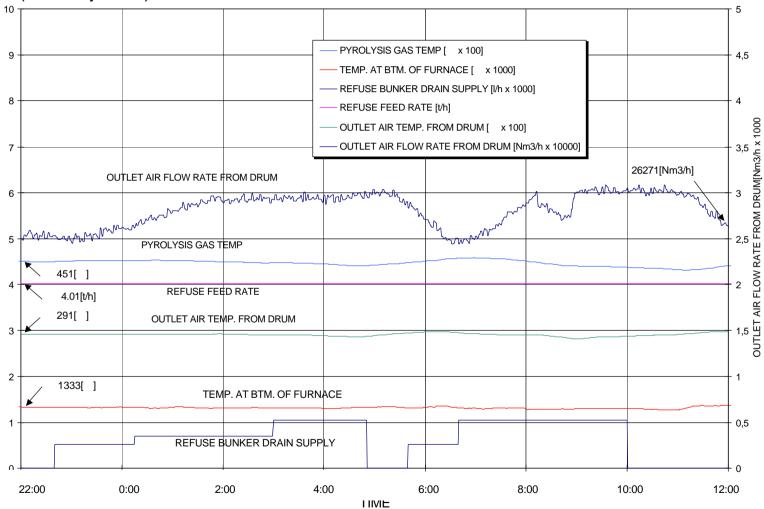
Yame R21 (110t/d x 2trains)

Toyohashi R21 (200t/d x 2trains)

Ebetsu R21 (70t/d x 2trains)

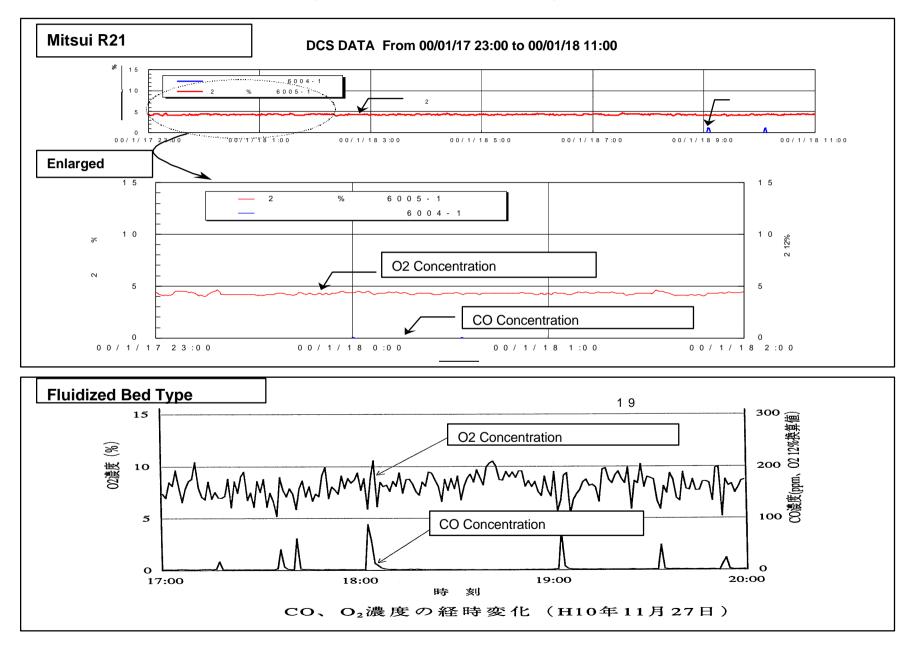


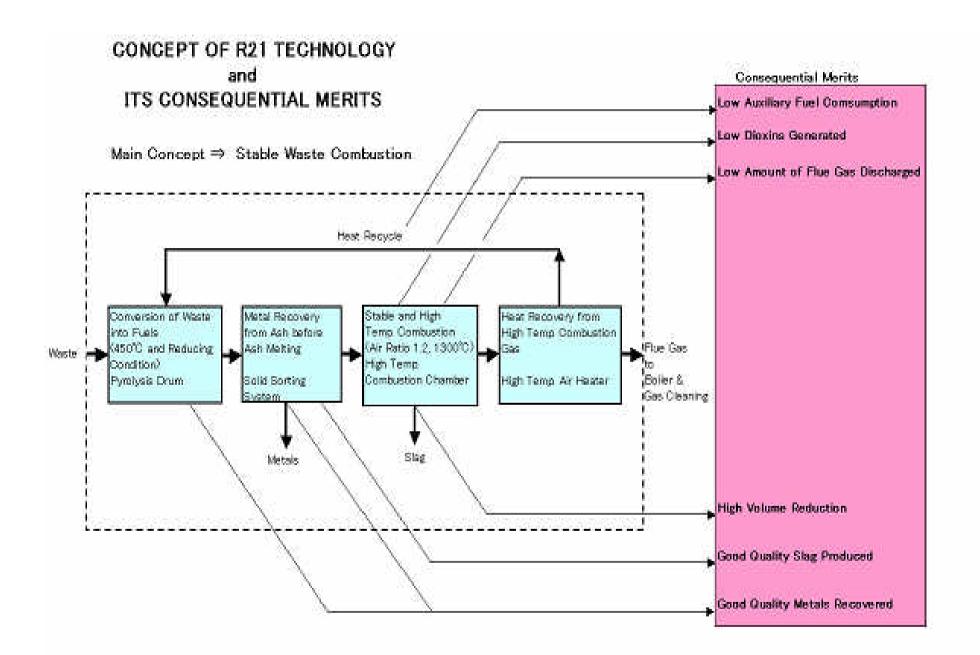
Koga Seibu R21 (130t/d x 2trains)


Nishiiburi R21 (105t/d x 2trains)

Kyouhoku R21 (80t/d x 2trains)

Gasification and Combustion Stability of R21


Excellent stability can be obtained even for the sudden waste composition change



(water injection) as shown below.

Attachment 2 Mitsui R21 vs. Fluidized Bed Type

Trend Data on Flue Gas Composition Combustion Stability

Advantage of Mitsui R21 Process

No auxiliary fuel input for ash melting

Self-combustion and melting point can be set around LHV1600~1700 kcal/kg. Auxiliary fuel consumption per year can be minimized.

Low emission of Dioxins

0.01 ng-TEQ/Nm3 can be attained.

High volume reduction ratio

 $1/100 \sim 1/200$

Life of land fill site can be greatly prolonged.

· Recovery of good quality steel and aluminum

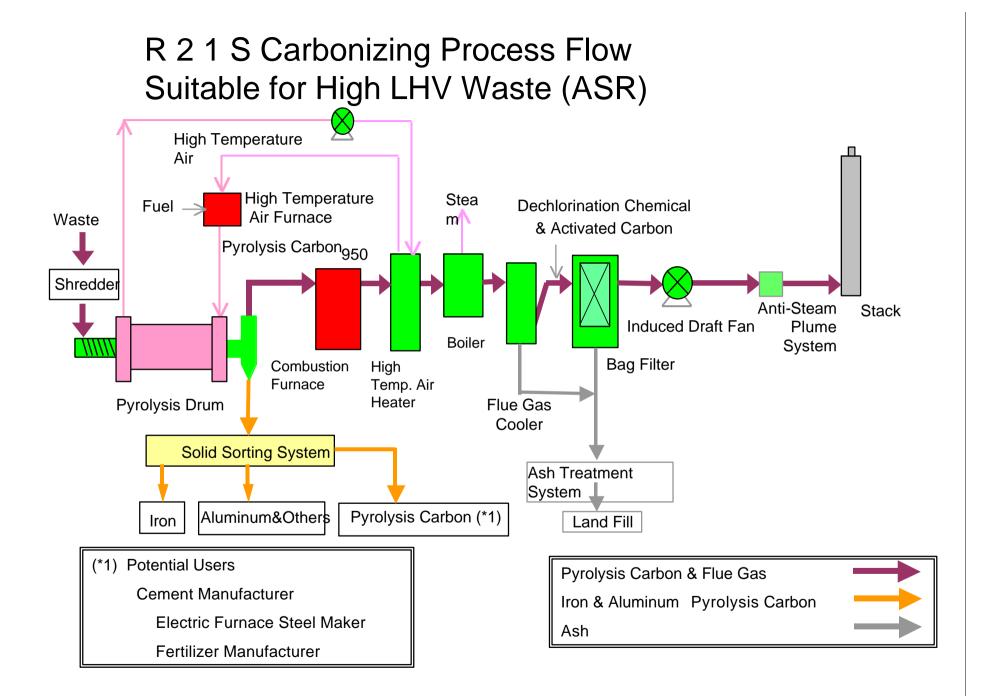
Because of 450°C Pyrolysis temperature and Reducing Condition in Pyrolysis Drum, recovered metals are having a good quality, not melted, nor oxidized.

Stable and good quality slag produced

Metals are removed from Pyrolysis residue in Solid Sorting System before melting.

Good quality slag without any metals contained can be produced.

Efficient heat recovery


Combustion air ratio can be reduced to 1.2, enabling the flue gas volume and heat loss into the atmosphere to be minimized.

Comparison of new process

	unit	Kiln type	Fludized Bed	Shaft
initial cost	[-]	100	100	150
running cost	[-]	100	120	150
number of operator	[-]	100	120	150
plant area	[-]	100	100	120
recycle material		Fe, Al, slag	Fe, Al, slag	mixed metal
volume reduction ratio	[-]	1/1001/150	1/1001/150	1/501/100
dumping material				slag
content of flue gas				
Nox	ppm	<100150	<100150	<100150
Sox	ppm	< 30 50	< 30 50	< 30 50
Hc	ppm	< 50100	< 50100	< 50100
Dust	g/Nm ³	< 0.1	< 0.1	< 0.1
Со	ppm	< 10	< 30	< 30
Dxn				
gas side	ng-TEQ/Nm ³	< 0.1	< 0.1	< 0.1
solid side	ng-TEQ/g	< 0.1	< 1	< 1
total discharge rate	ì g-TEQ/t-waste	< 12	< 5	< 5
auxilially fuel		no	required	cokes
operation technique		easier	harder	more harder

Comparison of conventional process

	unit	Fludized Bul	Stoker
initial cost		100	100
running cost		100	100
maintenance cost		100	120
number of operator		even	even
plant area		100	100
recycle material		unburnables	
volume reduction rate		1-30	1-10
dumping material		fly ask	bottom & fly ash
content of flue gas			
Nox	ppm	100 150	100 150
Sox	ppm	30 50	30 50
Нс	ppm	50 100	50 100
Dust	g/Nm ³	0.1	0.1
Со	ppm	50	50
Dxn			
gas side	ng-TEQ/Nm ³	0.1	0.1
solid side	ng-TEQ/g	1 5	1 5
total discharge rate	ì g-TEQ/t-waste	10 30	30 50
operation technique		easier	harder
start & stop		Daily start & stop is possible	harder
suitable capacity	t/day	100 300	300

