Eskom Biomass fuel supply

Eskom Biomass Fuel Supply Study:

Co-firing coal with 10% biomass @Eskom power stations

William Stafford, PhD, Natural Resources and the environment, CSIR.

IEA32 Biomass Workshop, Eskom Megawatt Park 04 November 2014

GHG abatement

Global GHG abatement cost curve beyond business-as-usual - 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

Biomass: a renewable carbon-neutral fuel?

Available biomass?

Viable biomass?

Sustainable biomass?

Project boundaries?

Project scope and Milestones

- South Africa and its *physical* neighbours
- Woody Biomass (>20% lignin) availability
- Feasibility of biomass supply (wood and upgraded woodfuel with cost +/- carbon benefits)
- Impacts (social and environmental) and Risks
- Markets and regulations

**Milestone 1- Biomass availability

Milestone 2- Logistics

Milestone 3- Markets

Milestone 4- Fuel costs

Milestone 5- Impacts and Risks

Milestone 6-Regulations

01 July 2011 to 30 March 2012

Biomass fuel supply study: value chains

10% co-firing needs 13 Tg dry biomass @19.5 MJ/kg

Woody biomass distribution by resource

Available Biomass resources

Viable Biomass resources

Avoid competition with existing uses: forestry industry and livelihoods

Super sources (Old)

Forestry residues and wastes (8%), Forest/woodland(20-60% IAPs and bush encroachment (80%)

:: Biomass resources in close Proximity to Eskom/transport node

:: Exclude protected areas (ie National parks) and steep slopes

our future through science

Forestry- plantations

Woodlands and forests

Woodland and forest - Biomass flows

Region	Biomass Flow (Tg/yr)
Namibia	3.0
Botswana	6.4
Lesotho	0.9
Swaziland	0.9
Zimbabwe	17.3
Mozambique	74.2
South Africa	24.6
Western Cape	n/a
Eastern Cape	5.9
Northern Cape	0.6
KwaZulu Natal	4.7
Mpumalanga	2.8
Limpopo	4.6
Gauteng	0.3
North West	1.9
Free State	1.8

20-60% available?

Invasive Alien Plants

Click to add title

Invasive Alien Plants-Biomass Stocks (Tg)

Province	Acacia	Eucalyptus	Pine	Poplar, willow & <u>Prosopis</u>	Total
Eastern Cape	28.7	9.4	5.5	3.8	47.3
Free State	0.8	7.2	1.1	3.6	12.6
Gauteng	1.5	7.7	0.4	0.9	10.5
KwaZulu-Natal	15.1	16.5	2.7	0.7	35 .0
Limpopo	1.1	3.7	0.8	0.7	6.4
Mpumalanga	6.4	18.1	2.8	3.6	30.9
Northern Cape	-	-	-	2.9	2.9
North West	0.4	3.1	0.1	0.5	4.1
Western Cape	6.6	2.8	8.5	0.4	18.3
Total	60.6	68.5	21.9	17	168.1

Stocks>flows

Up to 80% available.. access and accesbility

Bush encroachment

Bush encroachment - Biomass stocks

Region	Biomass stock (Tg)
Namibia	14.8
Botswana	80.1
Lesotho	0.1
Swaziland	0.0
Zimbabwe	94.9
Mozambique	43.9
South Africa	169.0
Western Cape	0.0
Eastern Cape	26.0
Northern Cape	1.5
KwaZulu Natal	13.6
Mpumalanga	16.6
Limpopo	76.1
Gauteng	1.8
North West	29.7
Free State	3.7

Stocks to Flows

Up to 80% available? (20% tree cover of savannah)

Sustainable Biomass resources

- >> Annual available woody biomass resources of 31 Tg in **Southern Africa** and total annual viable woody biomass resources 23 Tg in
 Southern Africa- **sufficient to meet Eskom's co-firing demand**
- >>However, significant supply from **neighbouring countries** required:the viable amounts from **South Africa** are only 7 Tg, which is only sufficient for 6% co-firing

>>IAP and bush encroachment non-renewable and available only for 20 years...

Fuel Upgrading

gure 6: Van <u>Krevelen</u> diagram of <u>torrefied</u> wood (TW) produced under different Inditions: coal, fresh wood, charcoal, and peat samples. <u>Torrefaction</u> reaction Inperatures are placed in parentheses in the legend. Source: <u>Boersma</u>, et al. 2005

on longer morphisms

■ Moisture (wt%) ■ LHV (MJ/kg) ■ Energy density (GJ/m3) ■ Bulk Density (100 kg/m3)

Water-absorption test: torrefied pellets

Impacts: carbon footprint

our future through science

- >> Fuel upgrading has a significant carbon footprint and reduces the overall carbon reductions from the 10% cofiring
- >> Dry wood-chips have the lowest GWP when transported over short distances (<400 km) whilst torrefied chips and torrefied pellets have the lowest GWP when transportation distances are greater than 400km. However additional processing needed on the Eskom side of the gate....
- >> Coal mining and upgrading causes much less (< 30%) GWP than any of the biomass fuel supply options, but this only considers the supply up to the Eskom gate.

Impacts: Overall carbon footprint compared to coal

Fuel upgrading has a significant carbon footprint

Reduces the overall carbon savings from the 10% possible as a result of

distances (<400 km), but additional processing needed on the Eskom side of the gate....

Torrefied chips and torrefied pellets have the lowest GWP when transportation distances are greater than 400km.

Impacts: Water footprint from biomass growth

New plantations

Stream-flows decrease between 20 and 200 m³/ha

For IAP clearing:

Stream-flows increase between 20 and 200 m³/ha

Summary and future questions...

- 23 Tg in Southern Africa available, but only 7Tg from South Africa, sufficient for 6% co-firing
- Invasive alien plant- water and land productivity benefits...but non-renewable: sustainable for fixed time (ie 20 years). ditto Bush encroachment
- Torrefied pellets or chips 'best' option, except short distance
 Torrefied chips/pellets store better, an low moisture, higher energy
 density, better handling and storage, and co-milling (grindability)
 However..risks of early commercial technology
- Transport is the greatest overall cost component. Optimisation......

our future through science

 Alternative options- distributed dedicated power generation (ie biomass gasifiers) to feed in to grid/ mini-grid.
 CHP and heat/cooling options

Thanks!

