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Introduction

The TNO mission:

To apply technological knowledge with the aim of strengthening the 
innovative power of industry

One field of expertise is Thermal Conversion Technology

Mathematical models are used to optimize 
thermal conversion processes, like:

• Cement process
• Biomass gasification
• Biomass combustion
• Municipal Solid Waste Combustion
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Dynamic model for grate stoker 
systems (1)

• Dynamics of the furnace:
• Fuel layer
• Gas phase

and the boiler section are 
described

• Interaction between the gas 
phase and the fuel layer 
through radiation
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Dynamic model for grate stoker  
systems (2)

• The grate is divided into 
many slices

• Mass and energy balances 
solved for every slice

• Conversion process:
• Propagation of ignition front 
• Fuel layer divided in two parts:

• Hot reacting part on top
• Cold fresh fuel at the bottom

• Speed of propagation front is 
depending upon:

• Fuel composition
• Amount of combustion air
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Dynamic model for grate stoker 
systems (3)
• Geometry is included:

• Co-current part
• Countercurrent part
• Ideally mixed part

• The co-current and 
countercurrent parts are 
divided into many ideally 
mixed gas reactors with 

• CO, H2: “mixed is burnt”
• Non-ideal mixing parameter
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Model validation    (1)

• How to validate dynamic models?
• Step response method
• System identification

• System identification: 
• Experimental modeling resulting in dynamic input-output 

relations without any physical meaning (black-box 
modeling)

• Can be used for MIMO systems and for closed-loop 
systems.
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Model validation    (2)
Three step procedure in system identification:Three step procedure in system identification:

1.1. Experimental phaseExperimental phase
excitation of process by userexcitation of process by user--defined signals + collection of indefined signals + collection of in-- and output data u(t) and output data u(t) respresp. y(t), t=1…N:. y(t), t=1…N:

2.2. Estimation of a modelEstimation of a model
by minimizing the difference between the measured output signalsby minimizing the difference between the measured output signals y(t) and prediction of these y(t) and prediction of these 

output signals y*(t,parameters):output signals y*(t,parameters):

3.3. Validation of the estimated modelValidation of the estimated model

by using, for example, statistical techniquesby using, for example, statistical techniques
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System identification results in a separated System identification results in a separated 
process and disturbance model:process and disturbance model:

PROCESS
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DISTURBANCE
MODEL
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Model validation    (3)
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Validation firstValidation first--principlesprinciples
model by means of themodel by means of the
estimated model:estimated model:

•• MethodMethod::

•• ResultsResults::
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Model validation    (4)
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Practical application    (1)
Operational experiences:

• fly-ash deposition to the furnace walls, leading to 
reduced throughput.

• high fly-ash rates due to a relative small grate and high 
primary air flows.

• flue gas temperatures at inlet second boiler pass fairly 
high, causing high temperature corrosion.

• no reliable combustion of low-calorific fuels.
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Practical application    (2)

Process analysis with system identification:

Title:



Optimization of biomass fired grate-stoker systemst

Practical application    (3)

Conclusions of process analysis:

• Influence primary air is bad due to excess air and 
wrong distribution

• Grate speed is used as control variable

• Control concept is not in agreement with philosophy: 
primary air is the best control variable
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Practical application    (4)

Application of TNO-simulator:
• Adaptation of the model to the specific situation, 

including control concepts

Conclusion from simulations (1):
• Very short fire, high thermal load on zones 1 and 2.
• The steam production can be influenced mainly with

the waste flow and grate speed. The primary air has
nearly no influence. 

• Oxygen can be controlled well with the primary and 
secondary air flow.
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Practical application    (5)

Conclusion from simulations (2):
• Present control concept is not transparent, so 

adaptation is needed
• Primary air distribution along the grate has to be 

changed

A new control concept has been developed 
based upon experiences with the simulator
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Control objectivesControl objectives::
•• Maximal conversion (combustion) of the fuel        Maximal conversion (combustion) of the fuel        
•• Maximal fuel throughput (highly flexible)Maximal fuel throughput (highly flexible)
•• Maximal steam production/energy outputMaximal steam production/energy output
•• Operate below but as close as possible to the maximum Operate below but as close as possible to the maximum 

levels imposed out of life span considerationslevels imposed out of life span considerations
•• Reduce the fluctuations in the process variables due to Reduce the fluctuations in the process variables due to 

the variation in fuel compositionthe variation in fuel composition::
•• Reduce fatigue due to variability of thermal stressReduce fatigue due to variability of thermal stress
•• To be able to operate more closely to constraints To be able to operate more closely to constraints 

imposed out of life span considerationsimposed out of life span considerations
•• To reduce load on postTo reduce load on post--combustion control equipmentcombustion control equipment

Practical application    (6)Practical application    (6)
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Results:Results:

Practical application    (7)Practical application    (7)
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Control of solid fuel combustion plants (1)Control of solid fuel combustion plants (1)

Performance assessment conventional solid fuel Performance assessment conventional solid fuel 
combustion control systems:combustion control systems:

Inefficient control due toInefficient control due to::

•• Complex (multivariable) character of the process Complex (multivariable) character of the process 
•• Presence of multiple conflicting control objectivesPresence of multiple conflicting control objectives
•• Not being allowed to exceed certain constraints (limitsNot being allowed to exceed certain constraints (limits))
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MPC
algorithm
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Model Predictive Control:Model Predictive Control:
Computation of manipulated Computation of manipulated 
variables via solving onvariables via solving on--line, at line, at 
each sample instant, a each sample instant, a 
mathematical optimization mathematical optimization 
problemproblem

IngredientsIngredients::
•• Dynamic ModelDynamic Model
•• Objective function: reflects Objective function: reflects 

controller performancecontroller performance
•• ConstraintsConstraints

Control of solid fuel combustion plants (2)Control of solid fuel combustion plants (2)



Optimization of biomass fired grate-stoker systemst

OPTICOMB Project (1)
Optimization and design of biomass combustion systems

Objective:
Increasing flexibility of fuels and reducing emissions

Expected results:
• Reduction of emissions
• Innovative control concepts
• New grate system
• New furnace concept
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OPTICOMB Project (2)

Sponsered by EU. Start January 2003. Duration 3.5 years

Coordination: TNO
Partners: University of Graz

Eindhoven University 
Vyncke
University of Lisbon
National Swedish Research Institute
Bio-energy plant Schijndel
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Conclusions

• A dynamical first principal model of grate firing 
systems is available

• Validation has shown that the model is in good 
compliance with practical data

• The model forms a good basis for improvement of 
combustion systems, in specific with respect to 
the control concept

• Results have been demonstrated at biomass 
combustion systems

• Development of MPC has been started


