

Competence Centers for Excellent Technologies

CFD simulation of biomass combustion plants – new developments

Robert Scharler

IEA Bioenergy Task 32 workshop:

CFD aided design and other design tools for industrial biomass combustion plants

Thursday 6th June 2013

Overview – fields of new CFD model developments

- Modelling of solid biomass combustion
- Gas phase reaction modelling
- Modelling of ash related processes
- Automation of CFD models

Modelling of solid biomass combustion

- State-of-the-art
 - Packed bed combustion models
 - Empirical models and 1D-models
 - Pulverised wood combustion
 - Lagrange models, simple kinetics for pyrolysis and char burnout

New developments

- 2D/3D packed bed combustion models
 - Euler/ Lagrange/ Hybrid/ DEM models with particle models considering intra-particle gradients and enhanced pyrolysis and char burnout models
- Modelling of pulverized wood combustion and co-firing
 - Lagrange/ Hybrid models with particle models considering intra-particle gradients and enhanced pyrolysis and char burnout models
- Fluidised bed combustion
 - Modelling of freeboard; simple empirical models for release in the fluidised bed; Euler/ Hybrid multiphase models

Gas phase reaction modelling

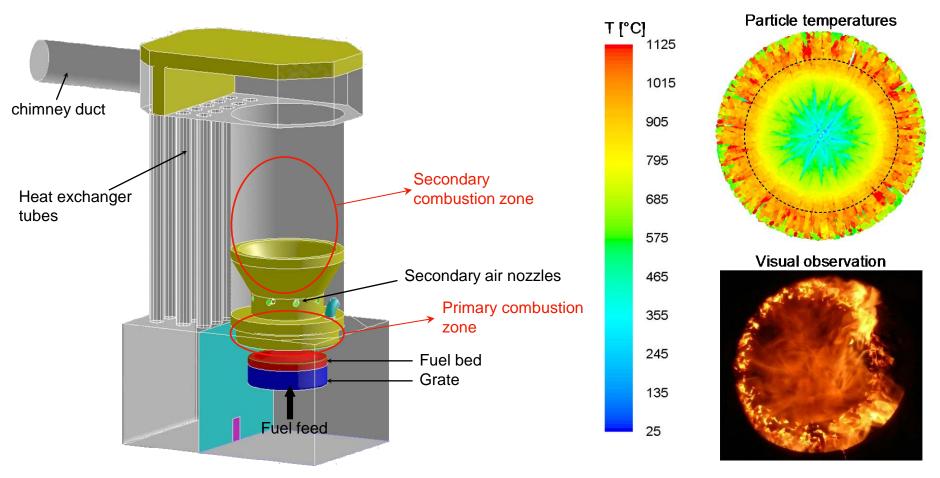
- State-of-the-art
 - Simulation of gas phase combustion / CO-burnout
 - Eddy Dissipation Model and global reaction kinetics
 - Simulation of NO_x formation
 - Postprocessor with global reaction kinetics although for biomass combustion not applicable

New developments

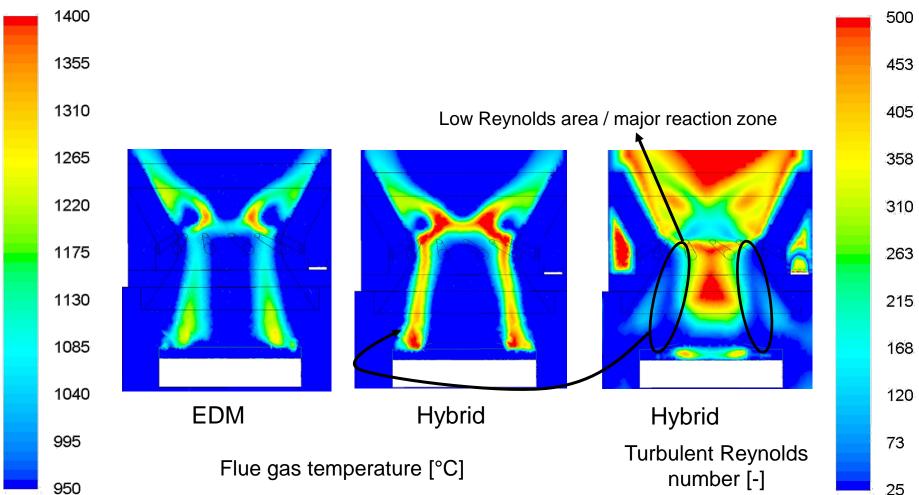
- Simulation of gas phase combustion / CO burnout
 - Eddy Dissipation Concept with skeletal / reduced kinetics
- Simulation of NO_x formation
 - Eddy Dissipation Concept with skeletal / reduced kinetics
- Extension of gas phase models from high to low-Re flows
- Models for mixing of gas streaks arising from packed beds
- Reaction kinetics considering sulphur and chlorine

Hybrid gas phase reaction model for laminar to highly turbulent flows - overview

- Reduced reaction kinetics (Kilpinen 97-skeletal)
- ISAT (in-situ adaptive tabulation) algorithm for run-time tabulation of the reaction kinetics (reduction of CPU time)
- Calculation of reaction rate with Finite Rate Kinetics (FRK) and Eddy Dissipation Concept (EDC)
- Evaluation of the flow regime based on the local turbulent Reynolds Number
- Effective reaction rate is calculated with both reaction rates weighted with a weight function W as a function of the turbulent Reynolds Number with a sharp increase from 0 to 1 at Re = 64:
 - $\blacksquare R_{\text{eff}} = R_{\text{EDC}} * W + R_{\text{FRK}} (1-W)$
 - \blacksquare Re >> 64: $R_{eff} = R_{EDC}$
 - \blacksquare Re << 64: $R_{eff} = R_{FRK}$



Hybrid gas phase reactions model for laminar to highly turbulent flows – example: test of the model for a 20 kW underfeed stoker furnace (1)



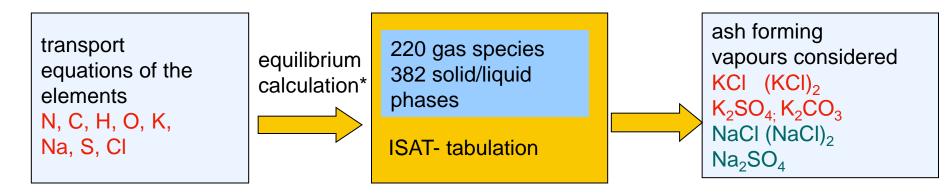
Hybrid gas phase reactions model for laminar to highly turbulent flows – example: test of the model for a 20 kW underfeed stoker furnace (2)

Iso-surfaces in a vertical cross-section through the furnace (up to the upper edge of the refractory lining)

7

Modelling of ash related processes

- State-of-the-art
 - Estimation of fly ash deposition, material erosion and precipitation rates
 - Simulation of particle trajectories as well as particle impaction rates at furnace and boilers walls
 - Correlation of the results with flue gas and wall temperatures as well as flue gas velocities
- New developments models for grate furnaces and pulverised fuel furnaces
 - Models for release of ash forming elements
 - Models for condensation of ash vapours on boiler walls
 - Models for deposition of coarse fly ash particles
 - Models of formation and deposition of fine particles
 - Erosion models
 - Models for corrosion (based on empirical correlations; based on detailed modelling of transport and chemical processes in the deposit and corrosion layer)



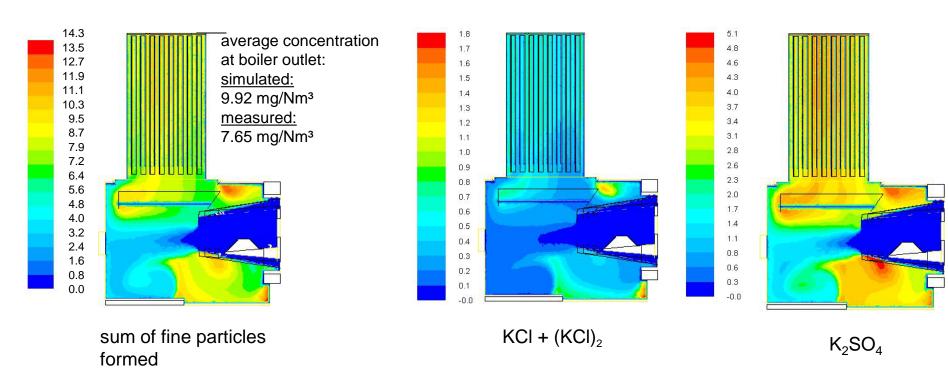
Fine particle and ash deposit formation model – overview (1)

- Empirical fixed bed release model for major combustion species, ash vapours and coarse fly ash particles from the grate
- CFD simulation of turbulent reactive flow
- Condensation of ash vapors

* Formation of sulphates based on kinetic approach (Christensen): $SO_2 + 0.5 O_2 \rightarrow SO_3$

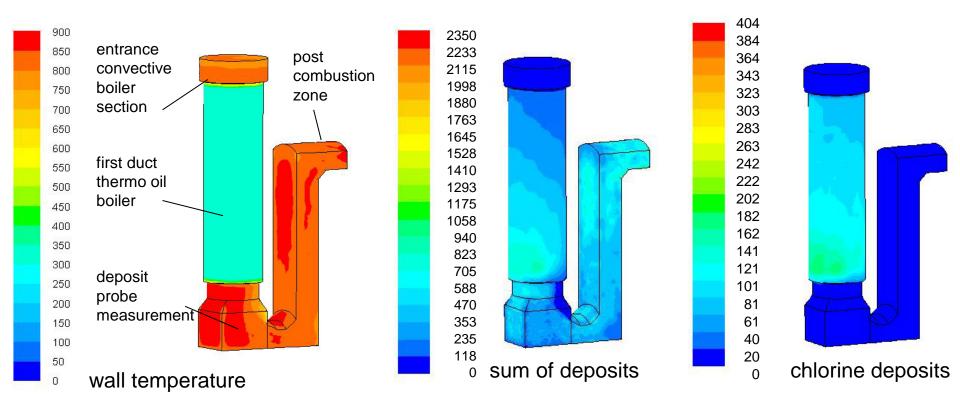
Fine particle and ash deposit formation model – overview (2)

- Fine particle formation and deposition
 - Nucleation due to super-saturation of ash compounds
 - Condensation of ash vapours on the surface of existing aerosol particles
 - Deposition mechanisms: thermophoresis and diffusion (Fick's law)
- Deposition model of coarse fly ash particles
 - Viscosity approach for silica particles and melting approach for salt particles as well as the condensation layer
- Erosion of deposits by coarse fly ash particles
 - Ductile and brittle erosion
- Modelling of the time-dependent formation of the deposit layer and its influence on heat transfer



Simulation of fine particle and deposit formation – example: simulation of fine particle formation in a 70 kW pellet boiler

Simulation results regarding aerosol formation in a 70 kW_{th} fixed-bed pellet boiler: left) total particle concentrations [mg/Nm³]; middle) fine particles formed by nucleation/condensation of KCl [mg/Nm³]; right) fine particles formed by nucleation/condensation of K₂SO₄ [mg/Nm³]



Simulation of fine particle and deposit formation – example: simulation of deposit formation in a 10 MW thermal oil boiler

Wall temperature [°C] (left), **total deposit mass flux** caused by condensation and fine particle precipitation [mg/m²h] (middle) and **deposit mass flux of chlorine** [mg/m²h] caused by condensation and fine particle precipitation (right) simulated for the post combustion chamber and the radiative section of a 10 MW_{th} thermal oil boiler; fuel: wood dust and wood chips

Automation of CFD-simulations

- State-of-the-art
 - Manual performance of furnace development and optimisation
 - Performance of case studies with manually defined variations

New developments

- Parameterisation and automation of geometry and mesh definition (e.g. for secondary air nozzles)
- Automatic performance of case study and data evaluation
- Link of CFD simulations with optimisation tools

Competence Centers for Excellent Technologies

Thank you for your attention

Robert Scharler robert.scharler@bioenergy2020.eu

+43/316/481300-33

