Combustion characteristics of Miscanthus based on lab-scale and pilot-scale combustion trials in Austria

Thomas Brunner, Friedrich Biedermann, Ingwald Obernberger

BIOS BIOENERGIESYSTEME GmbH

TEL.: +43 (316) 481300; FAX: +43 (316) 4813004

E-MAIL: office@bios-bioenergy.at

HOMEPAGE: http://www.bios-bioenergy.at

bioenergy2020+

- Introduction and objectives
- Methodology
- Results
 - Chemical characterisation
 - General data regarding the lab-scale and pilot-scale test runs
 - NO_x emissions
 - K-release and fine PM emission formation
 - HCl and SO₂ emissions
 - Deposit formation
 - Ash melting
- Conclusions and recommendations

Introduction (I)

- Energetic biomass utilisation is a steadily growing market.
- New options of biomass resources for combustion processes are needed in order to cover the growing fuel demand.
- Short rotation crops (SRC) represent an interesting future potential.
- Miscanthus is one promising option for an economically feasible utilisation of new biomass fuels in biomass combustion plants.

Introduction (II)

- Project in order to investigate the combustion related characteristics of new biomass fuels such a Miscanthus.
- Scientific partners:

BIOENERGY 2020+ GmbH

bioenergy2020+

Institute for Process and Particle Engineering Graz University of Technology

Company partners

BIOS BIOENERGIESYSTEME GmbH

MAWERA Holzfeuerungsanlagen GmbH

- Combustion related characterisation of Miscanthus by applying a new approach for biomass fuel characterisation based on the combined evaluation of selected testing methods.
 - Wet chemical fuel analyses and calculation of fuel indexes
 - Combustion tests in a lab-scale combustion reactor.
 - Combustion trials at a pilot-scale (350 kW) grate-fired combustion plant
- Evaluation of the results.
- Identification of fuel specific parameters and characteristics which are of relevance for an appropriate design and control of biomass combustion systems suitable for Miscanthus.

Methods applied (I)

- Miscanthus from a testing plantation in Hessen (Germany) has been used
- Fuel analyses
 - Moisture content (drying at 105°C; CEN/TS 14774-1)
 - Ash content (ashing in oxidising atmosphere at 550°C; CEN/TS 14775)
 - C, H, N (elemental analyser; ÖNORM CEN/TS 15104)
 - CI (bomb combustion in O₂ ion chromatography; ÖNORM CEN/TS 15289)
 - AI, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Zn, Pb
 (multi-step pressurised digestion with HNO₃ / HF / H₃BO₃;
 detection with ICP-OES and ICP-MS; ÖNORM CEN/TS 12290 or 15297)
 - GCV (ÖNORM CEN/TS 14918)
 - Bulk density

Lab-scale reactor tests

Objectives

- Determination of the combustion behaviour of biomass fuels.
- Determination of the release of gaseous compounds from the fuel during thermal decomposition.
- First indications concerning ash melting behaviour.

Methods applied (III)

Pilot-scale combustion tests

Plant data

- Horizontally moving grate
- Staged combustion
- Flue gas recirculation below and above the grate
- Fire-tube hot water boiler (350 kW)

Measurements, sampling and analyses

- Fuel and ash sampling with subsequent chemical analyses
- Recording of all relevant plant operation data (temperatures, combustion air flow rates, load, etc.)
- Gaseous emissions (O₂, CO, NO_x, HCl, SO₂)
- Particulate emissions (PM₁, total dust)
- Deposit probe sampling and deposit analyses (SEM/EDX)

Scheme of the pilot-scale combustion plant

Results – wet chemical analyses

		Miscanthus		Database values - Miscanthus			
		lab-scale	pilot-scale 1	pilot-scale 2	Mean	Minimum	Maximum
Moisture content	wt% w.b.	8.60	15.07	15.81			
Ash content	wt% d.b.	2.62	2.40	2.52	4.39	2.04	14.53
Carbon (C)	wt% d.b.	47.32	48.21	48.34	48.21	46.70	50.70
Hydrogen (H)	wt% d.b.	6.06	5.92	5.90	5.43	4.40	5.78
Nitrogen (N)	wt% d.b.	0.37	0.34	0.38	0.38	0.04	1.70
Sulphur (S)	mg/kg d.b.	547	561	598	573	200	1,800
Chlorine (CI)	mg/kg d.b.	1,390	1,420	1,430	2,106	700	3,800
Silica (Si)	mg/kg d.b.	2,210	2,260	2,560	20,537	6,930	34,963
Calcium (Ca)	mg/kg d.b.	1,010	728	787	4,667	800	10,724
Magnesia (Mg)	mg/kg d.b.	534	534	599	1,659	400	4,501
Phosphorus (P)	mg/kg d.b.	921	1,010	1,040	625	427	750
Potassium (K)	mg/kg d.b.	8,550	8,940	9,130	5,293	1,500	12,250
Sodium (Na)	mg/kg d.b.	53.0	50.3	68.1	335.9	17.0	1,197
Zinc (Zn)	mg/kg d.b.	19.00	14.40	15.60	16.19	11.07	21.00
Lead (Pb)	mg/kg d.b.	0.46	< 5	< 5	2.31	0.12	10.91
Si/K	mole/mole	0.36	0.35	0.39	5.40		
2S/CI	mole/mole	0.87	0.87	0.92	0.60		
(K+Na) / (2S+CI)	mole/mole	3.01	3.08	3.05	1.58		
K+Na+Zn+Pb	mg/kg d.b.	8,622	9,009	9,218	5,647		
Gross calorific value (GCV)	MJ/kg d.b.	19.30	18.83	19.09	19.11	17.80	19.51
Net calorific value (NCV)	MJ/kg w.b.	15.78	14.91	14.81			
Bulk density (chipped material)kg/m³		n.d.	98.6	99.4			
Energy density	kWh/m³	n.d.	408.7	408.8			

Results from wet chemical analyses – relevant fuel indexes

- > Si/K: 0.35 0.39 mole/mole
 - Considerably lower than the database mean value, even lower than for wood fuels
 - moderate embedding of K in the bottom ashes by the formation of K-silicates can be expected
- > 2S/CI: 0.87 0.92 mole/mole
 - 2S/Cl < 1
 - problems with corrosion have to be expected when high superheater temperatures are applied
- (K+Na)/(2S+CI): 3.01 3.08 mole/mole
 - (K+Na)/(2S+Cl) >>1: due to the alkaline surplus a good embedding of S and Cl into the ashes should take place
 - → only minor SO₂ and HCl emissions are expected
- > K+Na+Zn+Pb: 8,622 9,219 mg/kg (d.b.)
 - contribute to the formation of fine particulates
 - → due to the very high value high fine PM emissions as well as high deposit build-up rates on heat exchanger tubes and cooled walls are expected

time [s]

Lab-scale reactor tests results (example from one test run)

-N02

-HCN

800

1,000

Pilot-scale test runs – general data

23 hours test run performed

 By flue gas recirculation the combustion temperatures should be kept low (<950°C in the primary combustion zone) in order to reduce/avoid slagging problems

Air staging and flue gas recirculation data

- flue gas recirculation ratio below grate: 0.15 (recirculation ratio = recirculated flue gas / total flue gas)
- flue recirculation ratio total: 0.29
- primary combustion air ratio, λ_{prim}: 0.58
- total excess air ratio, λ_{total}: 1.76
- → Good air staging conditions could be achieved

Pilot-scale test runs – operation data and average emissions

duration	[h]	23.0
boiler load	[kW]	225.9
feed temperature	[°C]	72.4
return temperature	[°C]	65.0
flue gas temperature downstream boiler	[°C]	222.8
temperature of recirculated flue gas	[°C]	189.2
temperature primary combustion zone	[°C]	917.5
temperature secondary combustion zone	[°C]	1,089.9
O2 (dry flue gas)	[vol%]	9.0
CO (dry flue gas, 13 vol% O2)	[mg/Nm³]	153.9
OGC (dry flue gas, 13 vol% O2)	[mg/Nm³]	<2.0
NOx (dry flue gas, 13 vol% O2)	[mg/Nm³]	224.7

Only 65% of the nominal load could be achieved. Main reasons:

- restrictions regarding the fuel feeding system (low energy density of Miscanthus)
- a larger grate surface would have been needed to achieve an almost complete burnout at full load

Pilot-scale test runs – NO_x-emissions

- N content of the fuel: 0.34 to 0.38 wt% (d.b.) → increased NO_x emissions compared with chemically untreated wood fuels were expected.
- ➤ The conversion of fuel-N into NO_x emissions determined during the pilot-scale combustion test runs is somewhat higher than for wood fuels and straw.

Lab-scale reactor test runs – element release as well as potential for aerosol formation

Explanations:

Release ratio [%] =

(1 – mass of element in the combustion residues / mass of element in the fuel)*100

From these release data a potential for aerosol formation from inorganic easily volatile species of 211 mg/Nm³ (dry flue gas, 13 vol% O₂) can be calculated.

Pilot-scale test runs – aerosol (PM₁) emissions

- ➤ Average PM₁ emissions at boiler outlet: 57.5 mg/Nm³
- Lower K-release than determined for other biomass fuels due to reactions of K with Si (results from element balances show that 83% of the K are embedded in the bottom ash)
- ➤ Lower PM₁ emissions than expected from the lab-scale reactor test runs due to the flue gas recirculation and deposit formation in the plant.

Pilot-scale test runs – chemical composition of PM₁ emissions at boiler outlet

Explanations: results of wet chemical analyses of 4 impactor stages of one impactor measurement results in wt% without considering oxygen

➤ The fuel index 2S/CI (0.87-0.92) also indicates preferred KCI formation.

Pilot-scale test runs – HCl- and SO_x-emissions

Average emissions:

HCI: 2.4 mg/Nm³

SO_x: 15.4 mg/Nm³

Good embedding of CI and S in the ashes. Element balances over the combustion plant have shown that

- 96% of the Cl and
- 62% of the S

are embedded in the ashes

The result of the emission measurements respectively the experimentally determined embedding of S and CI in the ashes is in good agreement with the prediction made based on the evaluation of the fuel index (K+Na)/(2S+CI)

Pilot-scale test runs – deposit sampling, pictures of the probes

2 hours sampling time 340°C surface temperature LUV LEE

6 hours sampling time
340°C surface temperature
LUV LEE

12 hours sampling time
340°C surface temperature
LUV LEE

Pilot-scale test runs – RBU – rates of deposit build up

- Decreasing RBU from 6 to 12 hours exposure time due to shedding effects
- > RBU: 15.0 to 39.1 g/m²/h

results from test runs at the same plant (for comparison)

chemically untreated wood chips: RBU: 1.6 to 8.3 g/m²/h

bark: RBU: 5.5 to 10.1 g/m²/h

exposure time	average flue gas temperature			
2h	967°C			
6h	1,027°C			
12h	996°C			

Pilot-scale test runs – chemical compositions of deposits

Deposits are strongly dominated by KCI
→ high corrosion risk

Increasing deposition of coarse particles on the LUV side with increasing exposure time

On the LUV-side of the 6 hours sample most probably sulphation reactions have already started

Slagging tendencies (I) – photos from the lab-scale and the pilot-scale test runs

Lab-scale reactor:

> some ash sintering occurred

Pilot-scale test run:

- small slag pieces in the grate ash
- no ash melting in the secondary combustion zone

Slagging tendencies (II)

Conclusions and recommendations (I)

- > A novel advanced fuel characterisation method based on the combination of
 - wet chemical analyses (including the evaluation of defined fuel indexes)
 - lab-scale reactor tests and
 - pilot-scale combustion test

has successfully been applied.

➤ The results gained from the three methods supplement each other regarding the evaluation of combustion relevant fuel characteristics and provide a good picture of the fuel behaviour to be expected during Miscanthus combustion.

Conclusions and recommendations (II)

- ➤ With the fuel feeding system and the grate system applied only 65% of the nominal load could be reached.
 - → The low energy density of loose Miscanthus has to be considered during the design of the fuel feeding system.
 - → For Miscanthus combustion the specific grate surface load (kW/m²) has to be reduced.

The lab-scale reactor tests indicated a, compared with wood fuels, slower charcoal combustion and the pilot-scale tests have shown, that even at 65% load almost the whole length of the grate was needed to achieve acceptable burnout.

➤ A good gas phase burnout (average CO emissions of 154 mg/Nm³ and OGC emissions <2 mg/Nm³ related to dry flue gas and 13 vol% O₂) could be achieved.</p>

Conclusions and recommendations (III)

- Even if a good air staging with a low primary air ratio (0.58) was applied, a compared with wood and straw combustion, increased transformation of fuel N into NO_x emissions was determined (average NO_x emission: 225 mg/Nm³).
 → utilisation of the potential of primary measures for NO_x emission reduction and, depending on the emission limit, maybe also secondary measures for NO_x emission control are necessary
- Although Miscanthus is a K-rich fuel, moderate PM₁ emissions of 58 mg/Nm³ (related to dry flue gas and 13 vol% O₂) have been determined at boiler outlet.
 → good embedding of K in the bottom ash by appropriate fuel bed cooling (air staging and flue gas recirculation)

The results of the lab-scale reactor tests indicate a potential for aerosol formation of about 210 mg/Nm³. The difference compared with the PM₁ emissions measured is mainly related to the formation of KCl-rich deposits (as confirmed by the deposit probe measurements) as well as to the lower fuel bed temperatures at the pilot-scale plant (due to air staging and flue gas recirculation).

Conclusions and recommendations (IV)

- Significantly increased deposit build-up rates have been determined (up to 39 g/m²/h) (4 to 20 times higher than those for wood chip and bark combustion determined at the same plant)
 - → an efficient boiler cleaning system is needed for Miscanthus combustion
- Deposits mainly consist of KCI. Between 6 and 12 hours exposure time of the deposit probe sulphation reactions occurred.
 - → a high risk for boiler tube corrosion at high surface temperatures exists which has to be considered concerning superheater design and cleaning
- ➤ Only minor slag formation on the grate could be observed which was mainly due to the fact that the furnace temperatures were kept on a low level by flue gas recirculation and air staging. However, broad variations concerning Si and K contents of Miscanthus are possible and therefore fuel ash compositions with significantly lower ash melting temperatures could result. → an appropriate furnace cooling (primary combustion zone <950°C) is recommended to avoid excessive ash melting (can be achieved by a combination of air staging and flue gas recirculation)</p>

bioenergy2020+

Dipl.-Ing. Dr. Thomas Brunner Inffeldgasse 21b, A-8010 Graz, Austria

TEL.: +43 (316) 481300; FAX: +43 (316) 4813004

Email: brunner@bios-bioenergy.at

HOMEPAGE: http://www.bios-bioenergy.at