Expert workshop Small scale biomass co-generation Technology status and market opportunities

STATE OF THE ART OF ORC TECHNOLOGY FOR BIOMASS PLANTS

Roberto Bini – General Manager - Technical Area – Turboden srl - I

Copenhagen, October 7th 2010

Table of contents

- 1. Introduction & technology diffusion
- 2. Biomass cogeneration and the Split System
- 3. Biomass fuels & applications
- 4. High electrical efficiency units and new developments

ORC application

Standard size Turbogenerators: from 200 kW to 3 MW

customized products: up to 10 MW

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 2010 3/27

First ORC unit for biomass application. Turboden -1987

1987: A 3 kW_{el} CHP biomass ORC turbogenerator prototype in Milan

Single skid ORC Turbogenerators

Typical single skid ORC unit for biomass cogeneration (~ 700 kWel)

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 2010 5/27

The Thermodynamic Principle: The ORC Cycle

The turbogenerator uses the hot temperature thermal oil to pre-heat and vaporize a suitable organic working fluid in the evaporator (8 3 4). The organic fluid vapor powers the turbine (4 5), which is directly coupled to the electric generator through an elastic coupling. The exhaust vapor flows through the regenerator (5 9) where it heats the organic liquid (2 8). The vapor is then condensed in the condenser (cooled by the water flow) (9 6 1). The organic fluid liquid is finally pumped (1 2) to the regenerator and then to the evaporator, thus completing the sequence of operations in the closed-loop circuit.

ORC Plants – Perfomances

>Gross electric efficiency: nearly 20%, Overall energy efficiency: 98%

Starting from biomass and considering boiler efficiency, the overall electric efficiency becomes about 16%

Water

- Small, fast moving molecules
- Metal parts and blade erosion
- Multistage turbine and high mechanical stress

Organic Fluid

- > Very large flow rate
- Larger diameter turbine
- No wear of blades and metal parts

Technical advantages

- High cycle efficiency
- Very high turbine efficiency (up to 90%)
- Low mechanical stress of the turbine due to the low peripheral speed
- Low RPM of the turbine allowing the direct drive of the electric generator without reduction gear
- No erosion of blades, thanks to the absence of moisture in the vapor nozzles

Operational advantages / results

- Simple start-stop procedures
- Automatic and continuous operation
- > No operator attendance needed
- Quiet operation
- > High Availability (Admont over 50,000 hours of operation, availability > 98%)
- Partial load operation down to 10% of nominal power
- > High efficiency even at partial load
- Low O&M requirements: about 3-5 hours / week
- Long life

Layout – Some Examples

Map of ORCs installed by Turboden (*)

Average power

≈ 1 MWel

		neat		
	biomass	recovery	geothermal	TOT
Austria	30	1	1	32
Netherlands	1			1
Belgium		1		1
Poland	3			3
Morocco		1		1
Czech Rep	2			2
France	1		1	2
United Kingdom	1			1
Germany	66	2	2	70
Spain	1			1
Switzerland	4			4
Italy	39	7	1	47
North America		2		2
Croatia	1			1
Belarus	2			2
Latvia	1			1

	biomass	heat recovery	geothermal	тот
in operation	113	6	3	122
under				
construction	39	8	2	49
ТОТ	152	14	5	171

Update October 2010

(*) In biomass application about 10 ORCs have to be added in UE (realized by other suppliers)

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 2010 11/27

Table of contents

- 1. Introduction & technology diffusion
- 2. Biomass cogeneration and the Split System
- 3. Biomass fuels & applications
- 4. High electrical efficiency units and new developments

The Split System

Energy balances referred to water output

(Values are depending from biomass quality and actual items design)

TRADITIONAL SYSTEM Energy balance referred to "water output = 100"

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 2010_{15/27}

Table of contents

- 1. Introduction & technology diffusion
- 2. Biomass cogeneration and the Split System
- 3. Biomass fuels & applications
- 4. High electrical efficiency units and new developments

ORC Application in Sawmills

CHP Applications: Wood Pellet Production with ORC

Table of contents

- 1. Introduction & technology diffusion
- 2. Biomass cogeneration and the Split System
- 3. Biomass fuels & applications

4. High electrical efficiency units and new developments

High electrical efficiency ORC units

18%

10 15 20 25

30 35 40 45 50 55 60 65 70 75

Water outlet temperature from condenser

ssore 18% 14%

at various condensation water temperatures

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 201022/27

High electrical efficiency ORC units

AVAILABLE SIZES: 1.2, 2.4 MWel

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 201023/27

High electrical efficiency ORC units

HRS for biomass application - Standard Sizes and typical performances						
		TURBODEN	12 HRS	TURBODEN 24 HRS		
		Pel=1156 kW with Split* standard conditions	Pel=1188 kW without Split standard conditions	Pel=2269 kW with Split* standard conditions	Pel=2342 kW without Split standard conditions	
INPUT - Thermal oil Nominal temperature "HT" loop (in/out) Thermal power input "HT" loop Nominal temperature "LT" loop (in/out) Thermal power input "LT" loop Overall thermal power input	°C kW °C kW kW	305/210 4425 210/130 392 4817	<u>305/206</u> 4817 - - 4817	300/214 8850 214/130 784 9634	<u>300/21</u> 9634 - 9634	
OUTPUT - Cooling water Cooling water temperature (in/out) Thermal power to the cooling water	°C kW	25/35 3586	25/38 3556	24/37 7212	24/37 7143	
PERFORMANCES Gross electric power Gross electric efficiency Captive power consumption Net active electric power output Net electric efficiency	KW KW KW	1156 24,0% 46 1110 23,0%	1188 24,7% 49 1139 23,6%	2269 23,6% 89 21 80 22,6%	2342 24,3% 94 2248 23,3%	
Electrical generator		asynchronous triphase, L.V.	asynchronous triphase, L.V.	asynchronous triphase, M.V.	asynchronous triphase, M.V.	
Plant size		multiple skid	multiple skid	multiple skid	multiple skid	
Biomass consumption**	kg/h	2105	2316	4211	4632	

(*) The Turboden split system allows maximizing power production for a given biomass consumption.

(**) Assuming a low heat value of biomass = 2,6 kWh/kg and boiler efficiency = 0,88 in case of ORC with split , = 0,80 in case of ORC without split. The thermal oil boiler is not included in the Turboden scope of supply.

New developments of high efficiency ORC units

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 201025/27

New developments of high efficiency ORC units

With new ORC units today it is	Electricity Net efficiency	Cogenerative fraction water ^{IS} (60-80°C) ^{plu}	Waste heat (or low temp. utilization) us water (25-35°C)	Operation	
possible to produce:	16.5%	70%	/	Fully cogenerative	CHP unit
1000 kWel	20.4%	0%	66%	Power only	ated at tions
	19%	9%	58.5%	Partially cogenerative	nit oper nt condi
	16.2%	20%	50.3%	Partially cogenerative	HRS u differei

Efficiencies are referred to biomass input = 100% with a boiler efficiency of 88% (with split system) and include air coolers consumption (water pumps and fans) if present

State of the art of ORC technology for biomass plants – Copenhagen, October 7th 2010_{26/27}

Thank you for your attention!

Roberto Bini – General Manager - Technical Area – Turboden srl - I