

Biomass combustion and co-firing in The Netherlands

by
Ton Konings
KEMA

IEA Task 32 Meeting 18/02/2003 Salt Lake City

Technical description and operational experiences

- Stand-alone biomass combustion projects
- Co-firing in pulverized coal-fired plants

Stand-alone biomass combustion

- Grate-fired wood combustion Schijndel
- Bubbling fluidized bed combustion Cuyk
- Torbed wood combustion Dronten

Timber industry Schijndel B.V.

Combustion plant (1 MWe)

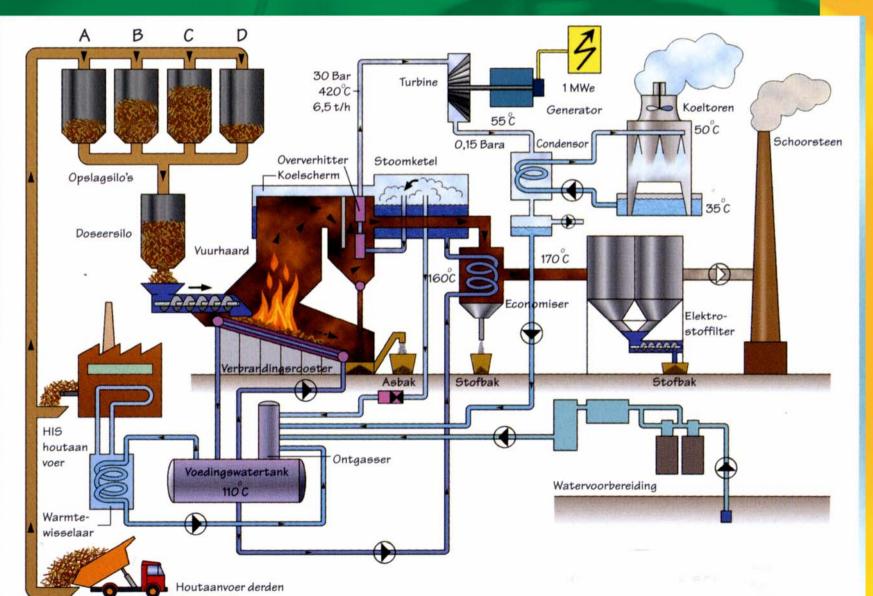
- clean waste wood mostly from their own wood processing, and partly delivered by third parties
- E-production (green electricity)
- internal usage of heat (drying processes and residential heating)
- in operation since April 1997

Timber industry Schijndel B.V.

Wood storage in 4 silo's

Dosing silo

Combustion on a travelling grate (water cooled)


Automatic ash removal

Steam production (28 bar, 420 °C)

Bag house filter

KEMA₹

Specifications

Investment cost 3 MEuro
Operating hours 7000
hours/year
Payback time 7 - 10 year
E-power 1 MW_e
Internal power consumption 180 kW_e

Steam conditions 24 bar, 420

°C

Steam production 6,5

ton/hour

Fuel input 1400 kg/h

KEMA POWER GENERATION & SUSTAINABLES

KEMA\(\dd{\text{*}}

Emissions

· CO mg/Nm³

400

mg/Nm³
• C_xH_y
• Dust

• NO_x

250

50 25

< 100


~ 250

< 2

mg/Nm³

< 10

mg/Nm³

KEMA POWER GENERATION & SUSTAINABLES

Technical evaluation

- Availability reasonable (70%, output increasing)
- Complex operation compared with large-scale
- Various technical problems, solved in part:
 - replacement superheater
 - defect generator
 - leakage/adaptions of the grate
 - major maintenance
 - regular slagging/fouling
 - fluctuating combustion conditions due to variations in fuel composition

KEMA

75 years

Economical evaluation

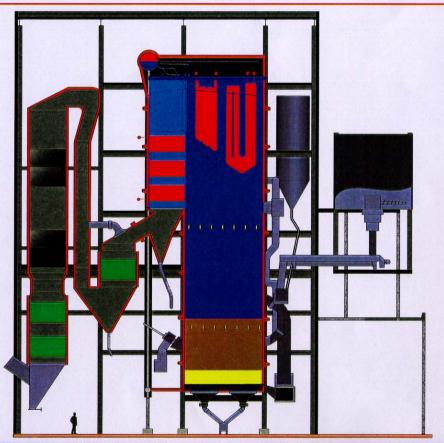
Economical feasibility depends strongly on:

- investment cost
- fuel price
- price paid for electricity to the grid and heat
- plant availability

- avoid purchasing wood from third parties
- minimal price 7.5 ct/kWh
- investment subsidies necessary

KEMA POWER GENERATION & SUSTAINABLES

Fuel	clean wood		
Fuel	270.000 ton/yr at 50% moisture		
	(36 ton/hr)		
Storage capacity	2 x 5000 m ³		
type boiler	bubbling fluidized bed		
manufacturer	Kvaerner Finland		
process	steam cycle with air cooled		
	condensor (45 °C; 0.1 bar)		
Investment	EUR 50,000,000		
Thermal capacity	84 MW		
gross electric output	27,5 MW		
net electric output	25 MW		
net electric efficiency	29.8 %		
annual production:			
electricity	190 GWh		
heat/steam	delivery is prepared		


Flue gas cleaning DeNOx Dust filter	SCR/SNCR (high dust) ESP		
emission-limits (6% O ₂ ,dry)			
mg/Nm3			
dust	20		
SO_2	250		
NO _x	100		
CO	100		
HCI	15		
HF	1,5		
sum heavy metals	1,5		
Cd	0,075		
Hg	0,075		
PCDD + PCDF	0,15 ng I-TEQ/m3		
C_xH_y	15		
NH ₃	5		

KEMA₹

Bubbling fluidized bed boiler

Pulp & Paper

Energy Systems BV Cuijk The Netherlands

Steam 78 MW_{th} 27.4 kg/s

100 bar 525 °C

Fuels Wood fuel Start-up 1999

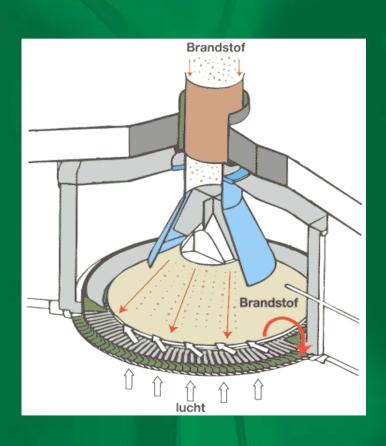
Kvaerner Pulping - Power Division

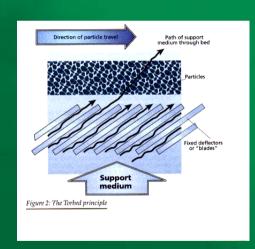
KVÆRNER"

ES336 16.7.1999

Operational experiences

- Lack of experience with influence of fuel quality on conversion behaviour
- bed agglomeration / fouling
- wood fuel handling (bridge formation)


Torbed wood combustion Dronten


- 2 x 4 MW_{th} Torbed units
- shredded waste wood as fuel (< 5x1x1 cm)
- hot air for drying manure in a rotary kiln
- emission limits
 - NO_x 150 mg/Nm³
 - CO 100 mg/Nm³

75 years

Torbed vergassingstechnologie

Operational experiences

- Operators not trained well with new technology
- Severe mechanical damage by temperature excursions
- Manure drying process more delicate than expected

- Equipment repaired
- Operator training

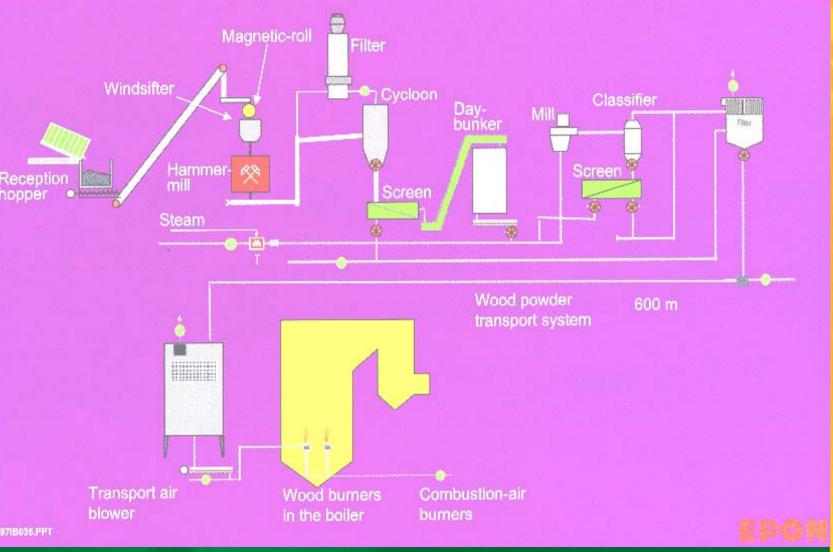
75 years

Dutch direct co-firing experiences

Power plant	Type of fuel	[kt/yr]	%cofiring	CO ₂ -emred.	Status
	1.07		(energy)	[kt/yr]	
Gelderland-13	demolition wood	60	3	97	operational
Amer-8	paper sludge	75	0.3	11	operational
Amer 9	wood pellets				
Borssele-12	phosphor oven gas	75	3	71	operational
	sewage sludge				
	palm kernels				
Maasvlakte 1/2	Biomass pellets	150	3	77	operational
	animal fat	40	3	82	tested
	meat- and bone meal				
Buggenum-7	poultry litter	100	10	128	study
Hemweg-8	sewage sludge	75	3	92	tested

Demolition wood / sewage sludge: negative view from the public (heavy metals)

Biomass pellets: 60 w% paper/cardboard, 24 w% waste wood, 16 w% compost



Gelderland 13 power plant

- 602 MW_e, pulverised coal wall fired, dry bottom, bituminous coal (import blends)
- subcritical steam (540 °C ,190 bar; 540 °C reheat)
- Low-NO_x burners, SCR
- ESP + wet FGD

KEMA\t

KEMA Wood logistics CG13

KEMA POWER GENERATION & SUSTAINABLES

Experiences CG13

- Wood milling circuit capacity not sufficient
- High maintenance cost
- Unburned wood particles in bottom ash

- redesign of milling circuit
- injection wood powder in the coal feed pipes

Co-firing at Maasvlakte

- 2 units 518 MW_e, pulverised coal tangentially fired, dry bottom, bituminous coal (import blends)
- subcritical steam (540 °C ,180 bar; 540 °C reheat)
- Low-NO_x burners, overfire air
- ESP + wet FGD

Co-firing experience

- animal fat
- anode cokes
- biomass pellets
- citrus pellets
- meat and bone meal
- petroleum cokes
- poultry litter

KEMA Biomass plant Maasvlakte E.ON

KEMA POWER GENERATION & SUSTAINABLES

Operational experiences

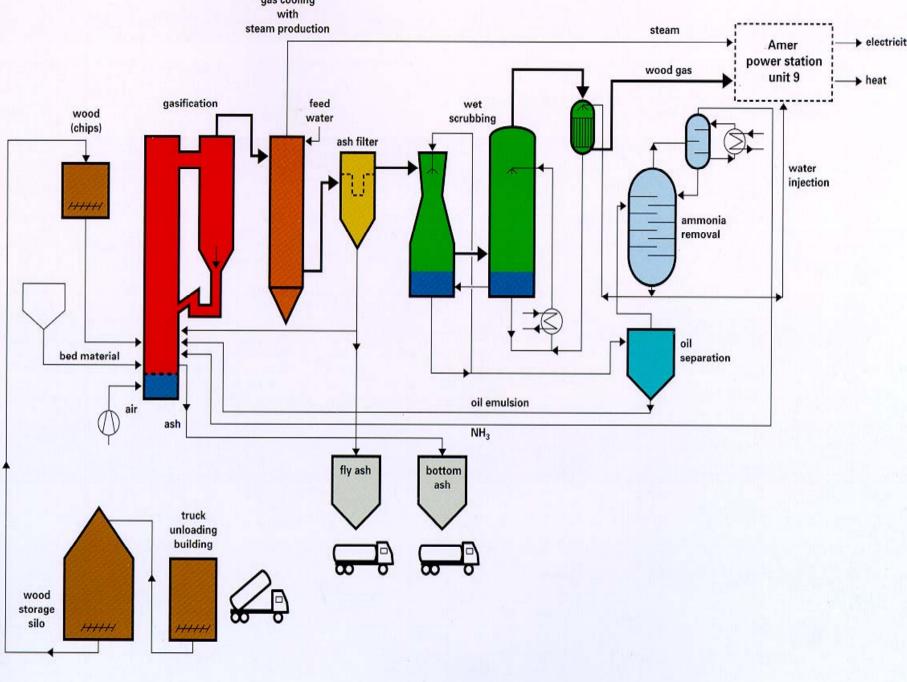
- Pet-cokes: burn-out, fly ash quality
- Biomass pellets: limited by drying capacity of the coal pulverisers
- animal fat: coal mill pattern essential for steam temperature setpoint
- meat and bone meal: bottom ash quality

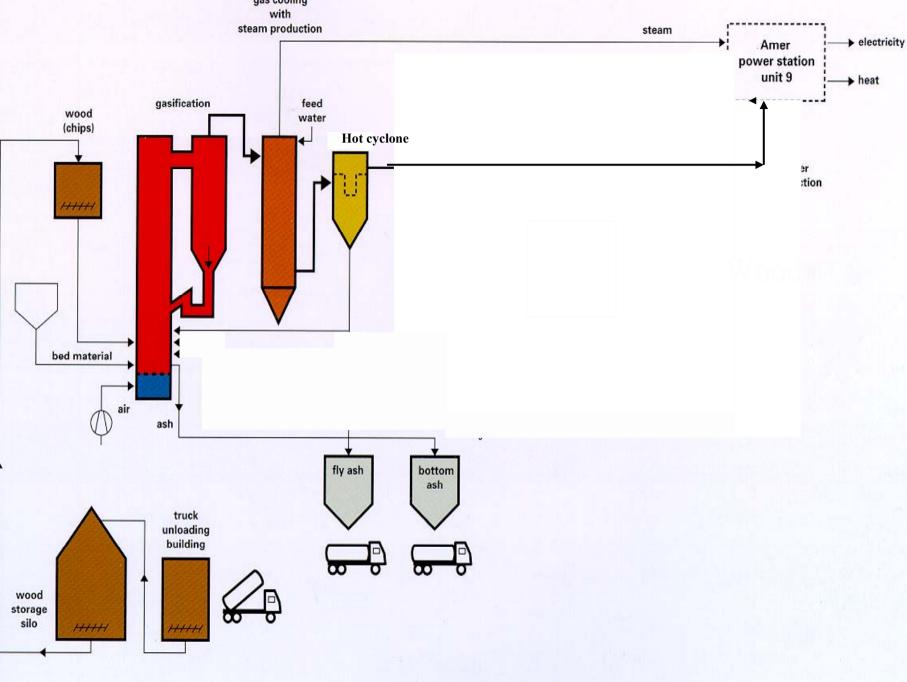
Technical and environmental constraints

- fuel handling
 - storage / spontaneous combustion
- milling / drying
- combustion
 - reactivity ↔ particle size distribution
- fouling and slagging
 - alkali chlorides
- thermal behaviour of the boiler

KEMA\(\dd{

Technical and environmental constraints


- corrosion / erosion
 - ratio S/CI
- by-product quality
 - free CaO
 - soluble PO₄
- emissions to the atmosphere
 - $< CO_2, < SO_2$
 - SCR deactivation
- components capacity



Amer 9 power plant

- 600 MW_e, 350 MW_{th}, pulverised coal tangentially fired, dry bottom, bituminous coal (import blends)
- supercritical steam (535 °C, 230 bar; 568 °C reheat)
- Low-NO_x burners, overfire air
- ESP + wet FGD

CONCLUSIONS

- DIRECT CO-COMBUSTION
 - cheapest way
 - high efficiency
 - proven with small percentages (< 10%)
 - strong incentive in the Netherlands to realize
 Kyoto agreement
 - emerging interest in other countries

INDIRECT CO-COMBUSTION

- more expensive but cheaper than stand-alone
- increase to higher co-combustion percentage / dirtier fuels
- most promising concepts:
 - upstream gasification without lowtemperature fuel gas clean-up
 - biomass upgrading