

IEA Bioenergy Task 32: Workshop on the Opportunities for Bioenergy in South Africa

Rural Energy: Improved Charcoal Production and Woodstoves

Mike Temmerman Johannesburg, 04/11/2014

- In many African countries, the domestic energy needed for cooking purposes and sometimes for heating find its origin in the forest
 - Wood energy
 - Charcoal
- Wood needed to produce these fuels, in the best cases comes from
 - Energy crops

 - Planted in the eighties, but still producing wood for energy
 - **Sawmill residues**
 - **♪** Well managed forests

- The wood is still often collected without active control and this lead to an overexploitation of forests
 - The driest the forest is, the more evident the overexploitation is

- Wood fuel is often opposed to Charcoal
 - Due to the low yields of traditional process production, charcoal has a bad reputation, but in practice, both fuels are complementary
 - - in rural areas
 - In this case wood is often collected, but not commercialized, which ends in an uncontrolled pressure on forests
 - In secondary cities located in forest areas
 - In this case wood fuel supply area is continuously increasing

- Charcoal is first a fuel intended to be transported
 - It is always commercialized
 - Charcoal makers have to be paid for their work
 - Makes a control of the market possible
 - In Senegal, Cameroun, Burkina Faso, charcoal may be transported on distances up
 to 1000 km

- Woodfuel & Charcoal have common characteristics:

 - GHG emissions in case of unmanaged forest or charcoal production
 - Uses characterized by
 - **↓** Low combustion yields
 - Emissions related to low combustion yields
- - The use of substitution fuels
 - Made from agricultural residues
 - Many projects have been set up, but few are "self supporting", mainly due to high production costs compared to traditional fuels
 - This aspect has high potentialities, but will not be describe further here
 - Improvement of the environmental impact of charcoal production
 - The opportunity of using sawmills residues
 - Improvement of charcoal production yields
 - - Improved stoves

- Woodfuel & Charcoal have common characteristics:

 - GHG emissions in case of unmanaged forest or charcoal production
 - Uses characterized by
 - **↓** Low combustion yields
 - **■** Emissions related to low combustion yields
- Possible solutions are:
 - The use of substitution fuels
 - Made from agricultural residues
 - Many projects have been set up, but few are "self supporting", mainly due to high production costs compared to traditional fuels
 - This aspect has high potentialities, but will not be describe further here
 - Improvement of the environmental impact of charcoal production
 - The opportunity of using sawmills residues
 - **♪** Improvement of charcoal production yields
 - - Improved stoves

- **♪** Improvement of the environmental impact of charcoal production
 - **♪** The opportunity of using sawmills residues

Improvement of the environmental impact of charcoal production

gronomiqu

- Sawmills have production yields of 50% in the best case
- In equatorial sawmills, residues are in most cases unused
 - Few amounts are used to produced charcoal, on traditional way
 - There are only few examples of use of these residues for cogeneration even if producers are aware of this possibility and generally outside the electricity grid
 - Most of the residues are burn in open air

Improvement of the environmental impact of charcoal production

- Use of unused resources: particular case of equatorial forest sawmills
 - Sawmills have production yields of 50% in the best case
 - Residues are in most cases unused

 - There are only few examples of use of these residues for cogeneration even if producers are aware of this possibility and generally outside the electricity grid
 - Most of the residues are burn in open air

- The production of charcoal from these residues has different impacts
 - The charcoal produced will be used instead of charcoal which would be produced anyway, sometimes in less productive forests
 - Avoids open air combustion of sawmills residues
 - Allows a centralized charcoal production and the use of improved charcoal production techniques

- **♪** Improvement of the environmental impact of charcoal production
 - The opportunity of using sawmills residues
 - **♪** Improvement of charcoal production yields

cra-w

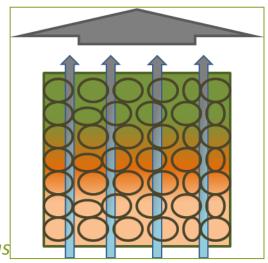
The charcoal production yield: definitions

The mass yield

$$MY_{ab} = \frac{M_{ca}}{M_{wa}} \ 100$$

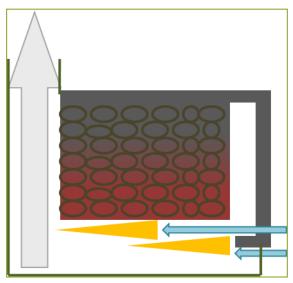
- Where

Energy yield (based on higher calorific value)

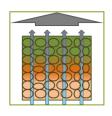

$$EY' = \frac{M_{ca}}{M_{wa}} \frac{HCV_{ca}}{HCV_{wa}} 100$$

- Where

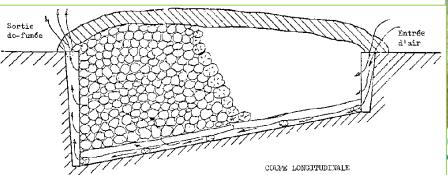
- As wood only contains 50% Carbon, the mass yield cannot go over this theoretical limit, in practice mass yields are lower
- This yield is often used in practice due to the easiness to determine it
- The low value of mass yields may explain the bad image of carbonization processes
 - Ion de Re
- Charcoal calorific value is higher then wood
- The energy yield is increased in consequence



- Charcoal production technologies: 2 main groups
 - - Charcoal pits
 - Brick kilns
 - Metal kilns
 - The necessary heat for carbonization comes from the combustion of a part of the wood of the load, with no recovery, nor combustion of the pyrolysis gas

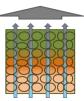


- Industrial continuous processes
- Recent brick retort kilns
- Pyrolysis gas are combusted and the generated flue gas are used heat the wood load



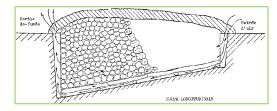
- Partly combusted load processes
- Traditional mound kilns & Charcoal pits

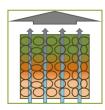
rch Center – CRA-W ducts & Energy – temmerman@cra.wallonie.be


onomiques

ches agronomi

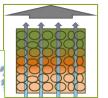
Partly combusted load processes





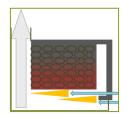
- **Advantages**
 - Mohile
 - Made of local materials
 - *No or very low investment*
 - Adjustable capacity
- Weak points
 - Highly depending on the skills of charcoal makers
 - High and permanent workload
 - Random production
 - High risk of complete combustion of the load
 - Varying quality of the produced charcoal
 - High pollution due to incomplete combustion
 - CH4 emissions (2,5% of emitted gas is considered here)
 - Low mass yield
 - From 12 to 25%
 - Typically 17%

- Partly combusted load processes
- Brick & metal kilns

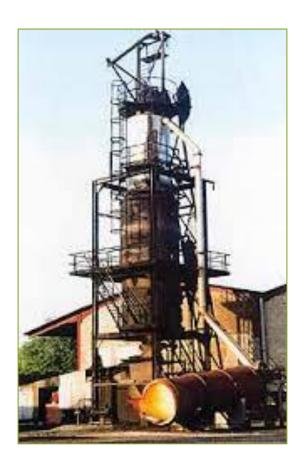


- - cra-w

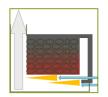
- Partly combusted load processes
- Bricks & metal kilns



- **Advantages**
 - Short & regular carbonization process
 - Easy process to conduct
 - Homogenized production
 - **♪** Charcoal quality
 - Lower risk of complete combustion of the load
- Weak points
 - Need of skilled workers to produce the kilns
 - Fixed capacity
 - Transport of raw material needed
 - High pollution due to uncompleted combustion
 - CH4 emissions (2,5% of emitted gas is considered here)
 - Low mass yield
 - From 12 to 30 %
 - Typically 22 %


Agricultural Research Center - CRA-W 3 – Biomass, Bioproducts & Energy - M. Temmerman – temmerman@cra.wallonie.be

- Retort Kilns
- Industrial processes

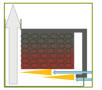


Retort Kilns

Industrial processes

Advantages

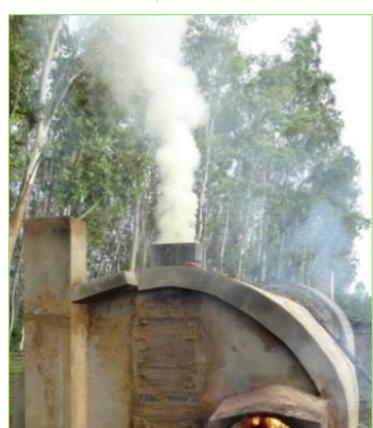
- **Continuous process**
- Momogenized production
- Pyrolysis gas combustion (no CH4 emissions)
- - 35% and above
- Weak points
 - High investment needed
 - There are many methods for implementing the retort principles
 - Most of them have been developed by the charcoal producers themselves and few are commercially available


 - Some names remain

 - Martezo
 - Herreshoff

cra-v

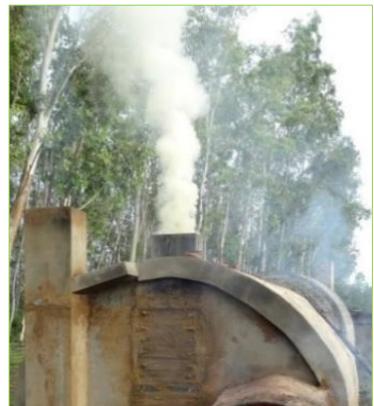
Retort Kilns

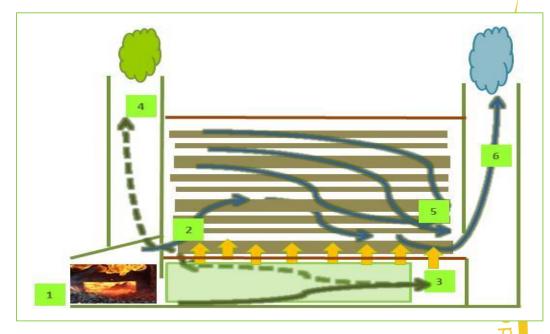


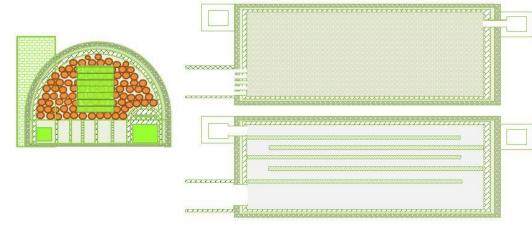
- The "Adam retort Kiln"
- was the first one to consider the possibility to adapt the retort principle on small scale, low investment carbonization process
- It is now well spread in countries producing charcoal
- The drawings and an user license may be purchased at the inventor of the concept
- The main advantage of this process is to allow to burn pyrolysis gas before releasing in the atmosphere
- An external combustion chamber allows to burn fuels not suitable for charcoal production
- However some weak point have been noticed at several users
 - Incomplete sealing of the walls making difficult to cool the load without losses due to combustion
 - Need of water to cool down the charcoal which leads to lower charcoal quality or needs additional drying
 - Pyrolysis gas are burned without heat recovery

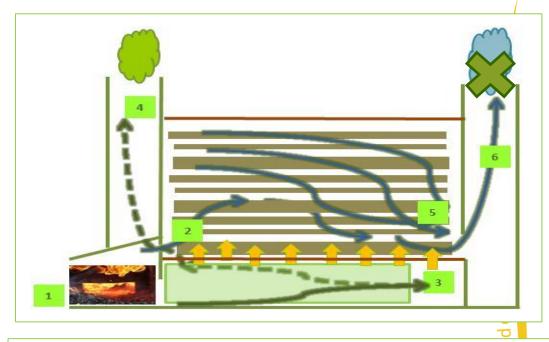
ronomiques

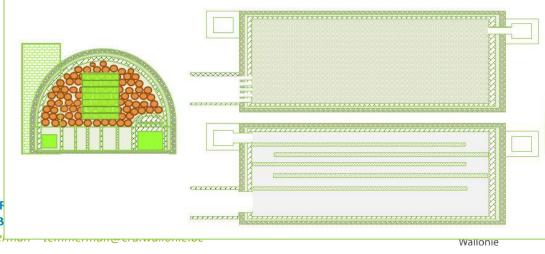
- The "Green Mad Retort"
- ♪ Prototypes in Madagascar
- Is based on the same principle as the Adam retort
- Sealing characteristics of the charcoal chamber have been improved by double walls
- The heat from combustion of pyrolysis gas is not recovered neither
- Mass yields of 35 % have been recorded

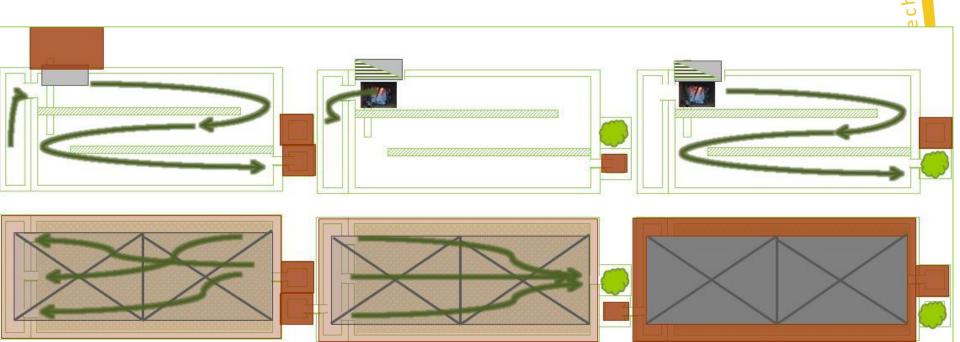





Retort Kilns


Wallonie


Retort Kilns



- Small scale processes
 - The "Mindourou Kiln"

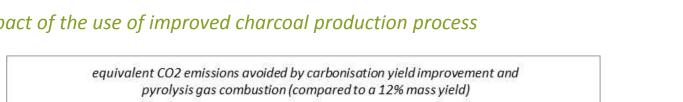
 - Is based on the same principle as the Green Mad retort
 - Sealing improvements have there been solve by implementing the kiln in a pit
 - It is a multi cell kiln
 - The heat from combustion of pyrolysis gas is recovered to dry the wood in the next cell of the kiln

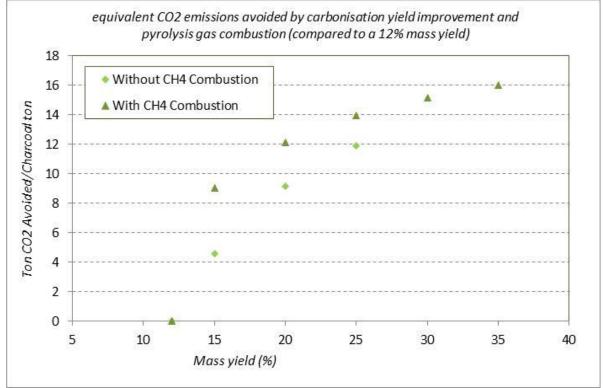
Retort Kilns

- The "Mindourou Kiln"

on Agricultural Rese U13 – Biomass, Biopi 2.be – M. Temmerma

Impact of the use of improved charcoal production process




- Regarding human health
 - Traditional carbonization sites are often smoky due to the use of mound kilns
 - The improved processes
 - Lead to more complete combustion of pyrolysis gas, which drastically reduce their toxicity

cra-v

Impact of the use of improved charcoal production process

- Compared to a low carbonization mass yield of 12%
 - The use of improved process e.g. up to a yield of 20% allows to avoid
 - About 9 Tons CO2/ton charcoal just due to yield improvement
 - About 12 Tons CO₂/ton charcoal if CH₄ is combusted in a retort kiln
 - Retort kiln allow to reach mass yields of 35%
 - In this case, 16 tons CO2 / ton charcoal are avoided if compared to a 12% mass yield

- Improvement of the environmental impact of charcoal production
 - The opportunity of using sawmills residues
- **♪** Improvement of conversion yields

The most used stoves, in many cases remains the three stone fire

- This fire is characterized by
 - Very low Energy efficiency (5 to 10%)
 - High emissions

 - CH₄
- Improved fire stoves have been proposed first to decrease the amount of fuel needed for cooking
- Afterwards it has been demonstrated that higher efficiency is linked with lower emissions

Lots of improved stoves have been proposed

- Metal made stoves
- Clay made stoves
- Rocket stoves
- With or without chimney
- ſ ...
- All characterized by some advantages:

 - Mono or multi pan
 - **Γ** Easy to use or not
 - Leading to fuel savings
 - Useful for traditional cooking
 - **.**..
- It appears the best efficiency is reached with stoves adapted to the pan
 - With is against the users who want to use different pans on the same stove
- Several stoves allow to reach better performance compared to the 3 stones
 fires
 - But efficiency generally remains low (10 to 25%)
 - The efficiency development is limited by the price of the stove

Selected stoves have been promoted by national & international institutions

▶ For example

Roumdé stove in Burkina Faso

Sakkannal in Sénégal

Djambar in Sénégal

New tree Stoves

↑ Rocket Stoves

- Domestic energy efficiency in Africa still may be improved as well as on its impact on human health, as for its environmental impact
- Simple & clean carbonization process have recently been set up
 - These small scale retort kilns allow high efficiencies and when compared to low yield traditional carbonization techniques allow to save about 16 ton CO2/ton charcoal
 - The probably low level of investment of these processes are another point that could contribute to a large spreading of these techniques
- Some improved stoves allow significant fuel savings and a significant decrease of emissions associated to domestic cooking
 - These stove have generally been, and are still promoted at national levels
 - Nevertheless efficiency of domestic stoves remains low and could be improved, if the price of these stove could increase
 - But the acceptance of improved stoves always has to face the purchasing power of users

Thank you

