

Indirect gasification

Workshop at IEA Bioenergy Task32 and Task33 Meeting, October 2010

Dr. Reinhard Rauch

Institute of Chemical Engineering
Working Group Future Energy Technology

Content

- Technology
- Operational status
- Efficiencies
- Investment costs
- Fuels and specifications

Gasification Concept

Data CHP Güssing

Start of construction Start up

September 2000 January 2002

Fuel ~2,2 to/h (Wood chips)

Water content 15 % (35 %)

Fuel power 8 MW

Electrical power 2 MW

Thermal power 4,5 MW

Electrical efficiency 25 % (20%)

Total efficiency 80 %

Owner and operator

Güssing Biomass Power Station Association

CHP-Plant Güssing

Availability

Optimisation of Availability

Economic frame conditions

- Biomass costs: 1.8-1.9 c€/kWh (80-90 €/t_{dry})
- Feed in rate for electricity: 16 c€/kWh for electricity from forest wood chips, <2MW_{el}, independent on technology
- Price of heat: 2.5-3.0 c€/kWh, depends on average biomass price and light heating oil price
- Funding of investment costs, due to demonstration plant

Expenses (2009)

Income (2009)

Optimisation of Efficiency

Commercial FICFB gasifiers

Location	Electricity production	Fuel / electr. MW, MWel	Start up	Status
Güssing, AT	Gas engine	8.0 / 2.0	2002	Operational
Oberwart, AT	Gas engine / ORC	8.5 / 2.8	2008	Operational
Villach, AT	Gas engine	15 / 3.7	2010	In commissioning
Klagenfurt, AT	Gas engine	25 / 5.5	2011	Detailed engineering
Ulm, DE	Gas engine / ORC	15 / 5.3	2010	Under construction
Geislingen, DE	AER-process / Gas engine / ORC	10 / 3.3	2010	Detailed engineering

Commercial FICFB gasifiers

Location	Electricity production	Fuel / electr. MW, MWel	Supplier	Investment costs (M€)
Güssing, AT	Gas engine	8.0 / 2.0	Austrian Energy / Repotec	10.7
Oberwart, AT	Gas engine / ORC	8.5 / 2.8	Ortner Anlagenbau	16
Villach, AT	Gas engine	15 / 3.7	Ortner Anlagenbau	?
Klagenfurt, AT	Gas engine	25 / 5.5	Ortner Anlagenbau	?
Ulm, DE	Gas engine / ORC	15 / 5.3	Repotec	?
Geislingen, DE	AER-process / Gas engine / ORC	10 / 3.3	Repotec	?

FICFB Ulm, Germany

Biomasses tested in the 100kW pilot scale FICFB gasifier

- Wood pellets
- Water content (Wood chips)
- Particle size (Saw dust)
- Fixed carbon (Coal)
- Waste wood

- Ash content (Sewage sludge pellets)
- Impurities (Animal residue)
- Ash melting (Straw)
- SRC (Willow)
- Waste

All fuels can be used, if the ash melting point is above 1000°C as pure fuel.

Fuels with lower ash melting point have to be used as mixture (e.g. 15% straw works well)

Current Status and Outlook

Successful scale up of a dual fluidized bed steam gasification system from laboratory to industrial scale (within 10 years)

Industrial plant available with

- High electrical efficiency (> 30 % with combined gas engine and ORC-process)
- No solid residues (without ash, carbon content <0,5 %)
- No liquid condensates
- European emission requirements are met
- High availabilities (>90 %)
- Second plant is already in operation (~10 MW_{fuel})

High potential for biofuels (BioSNG, BioFiT)

- BioSNG, most suitable, 1 MW (100 m³/h BioSNG) was demonstrated from wood chips, till using the BioSNG in cars
- Fischer Tropsch, research ongoing, scale up to 1 bpd is ongoing

The basic concept – "Green Chemistry"

Institute of Chemical Engineering Working Group Future Energy Technology

Outlook: usage as synthesis gas

Thank you for your attention

Institute of Chemical EngineeringWorking Group Future Energy Technology

Getreidemarkt 9/166 1060 Wien www.vt.tuwien.ac.at

Dr. Reinhard Rauch

E-Mail: reinhard.rauch@tuwien.ac.at

Tel.: +43 1 588 01 - 15954