

Influence of combustion conditions on the genotoxic potential of fine particle emissions from small-scale wood combustion

<u>Thomas Brunner</u>, Joachim Kelz, Ingwald Obernberger, Pasi I. Jalava, Maija-Riitta Hirvonen

IEA Bioenergy Task 32 workshop: Aerosols from small-scale biomass combustion plants, 27.01.2011, Graz, Austria

Competence Centers for Excellent Technologies

Content

Introduction and objectives

Methodology

- Biomass combustion systems investigated
- Operation of biomass combustion systems
- Experimental set-up

Results

Conclusions and Recommendations

Introduction

Present state of knowledge

- Differences exist regarding the particulate matter (PM) emissions of old and modern systems as well as automatically and not automatically controlled biomass combustion systems
- This concerns the magnitudes, particle size distributions as well as the chemical compositions of the particles

It is assumed that

- the chemical composition of PM (organic compounds and soot) significantly influences the health risks they cause
- PM emissions from incomplete combustion seem to be more harmful than those from complete combustion

Objectives

- concentration in the flue gas
- chemical composition
- toxicological in-vitro studies
- Evaluation of the dependencies between combustion technology respectively burnout quality and the chemical properties of the PM emissions
- Investigation of the whole causative chain and identification of correlations between
 - the combustion systems performance in terms of burnout
 - the chemical characteristics of PM₁ emissions and
 - the toxicological potential associated to these emissions

Methodology – general information

- Performance of test runs with a broad variety of different residential biomass combustion systems over typical whole day operation cycles
 - Recording of relevant operation data
 - Gaseous and PM emission measurements
 - PM₁ sampling for subsequent
 - chemical characterisation
 - toxicological in-vitro studies

2 respectively 6 (tiled stove) test runs with the biomass combustion systems investigated were performed

Methodology – biomass combustion systems investigated

Representative cross section of residential heating technologies presently applied in Europe

Small-scale biomass combustion systems tested

- modern pellet boiler (21 kW)
- modern wood chip boiler (30 kW)
- modern logwood boiler (30 kW)
- old logwood boiler (15 kW)
- modern logwood fired stove (6 kW)
- old logwood fired stove (6.5 kW)
- modern logwood fired tiled stove (4.2 kW)

Methodology – operation of biomass combustion systems

Simulation of typical whole day operation cycles

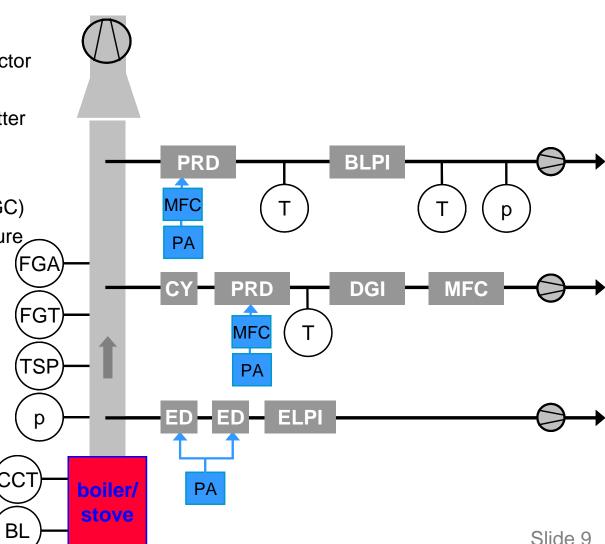
- automatically fed and automatically controlled systems
 - start-up and shut down procedures
 - load changes
 - stable full and partial load operation
- manually fed and automatically controlled systems
 - ignition phase, main combustion and burnout phase considered
- manually fed natural draught system
 - all operation phases including ignition batches considered

Methodology – experimental set-up (I)

- Test stand setup is based on recommendations for particle sampling for toxicological tests, worked out within the ERA-NET Bioenergy project BIOMASS-PM and generally follows the setup described in EN 13240
- Flue gas was diluted with pre-cleaned particle free pressurised air before the particle sampling in order to convert condensable organic species into particles
- Diluted flue gas: temperature below 40°C
- All measurements as well as PM₁ emission sampling took place over the whole testing cycle

Methodology – experimental set-up (II)

Particle measurement and sampling


- DGI Dekati gravimetric impactor
- BLPI Berner-type low-pressure impactor
- ELPI electric low pressure impactor
- TSP total suspended particulate matter according to VDI 2066

Plant operation parameters

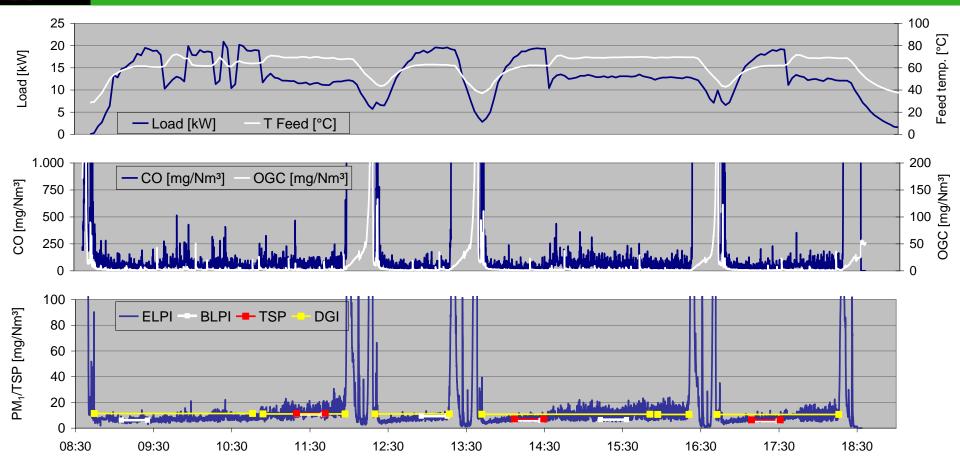
- FGA flue gas analysers (O₂, CO, OGC)
- CCT combustion chamber temperature
- FGT flue gas temperature
- BL boiler load

Flue gas dilution systems

- PRD porous tube diluter
- ED ejector diluter
- CY PM₁₀ cyclone
- PA pressurised air
- MFC mass flow controller
- p pressure measurements
- T temperature measurements

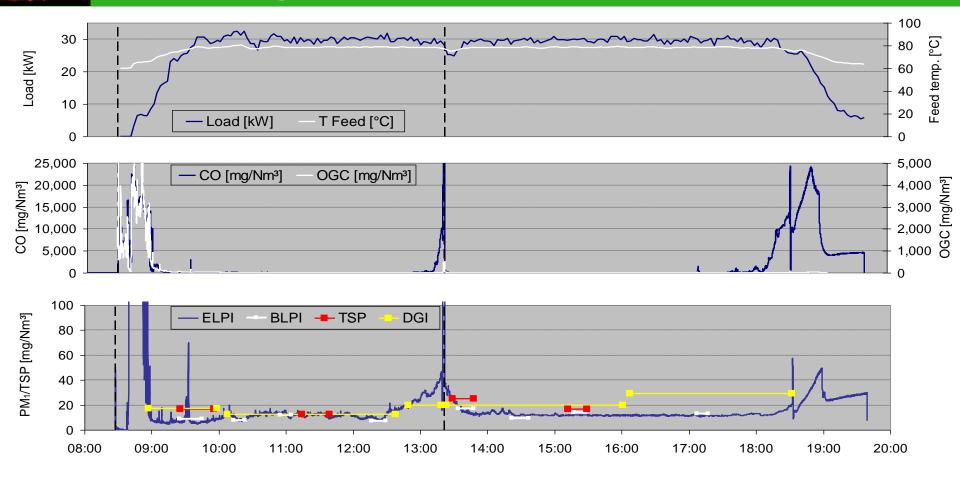
Methodology –

chemical analyses of PM and toxicological tests

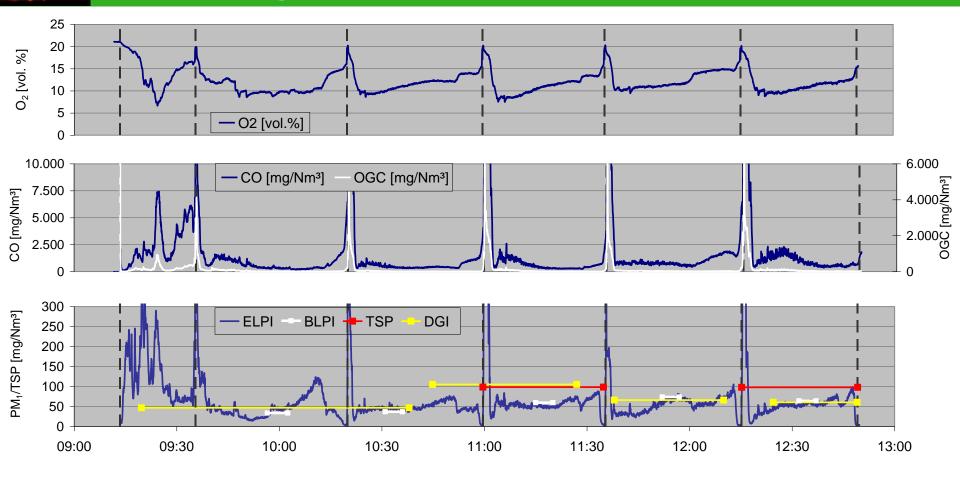

Determination of the chemical composition of selected aerosol samples regarding

- organic carbon (OC), elemental carbon (EC)
- inorganic components

Toxicological tests


- Mouse RAW264.7 macrophage cell lines were separately exposed to four doses (15, 50, 150 and 300 µg/ml) of each PM₁ sample for 24 hours
- The specific aims of the toxicological in-vitro tests were
 - to investigate cell death
 - to study the inflammatory responses caused by PM
 - to assess the PM induced genotoxicity as measures for possible health effects caused by these emissions

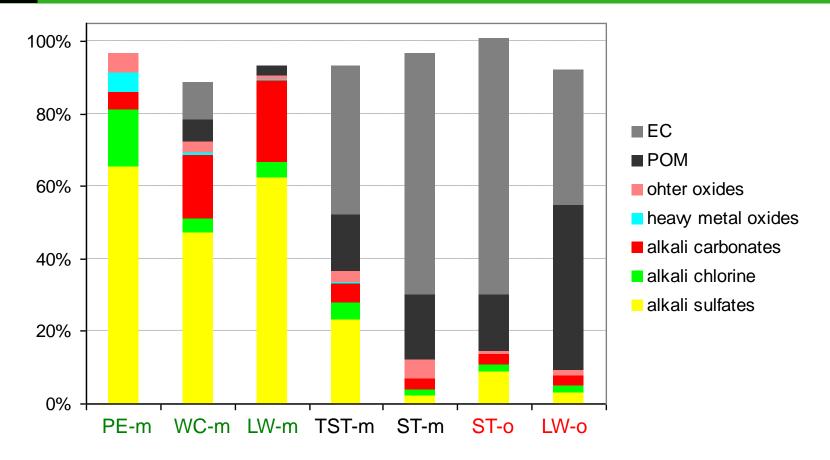
Results – emission profiles – modern pellet boiler


Explanations: fuel: pellets according to ÖNORM M 7135; data related to dry flue gas and 13 vol% O₂; T Feed ... feed temperature; load ... boiler load; the BLPI, TSP and DGI lines indicate the measured PM concentration over the respective sampling period Slide 11

Results – emission profiles – modern logwood boiler

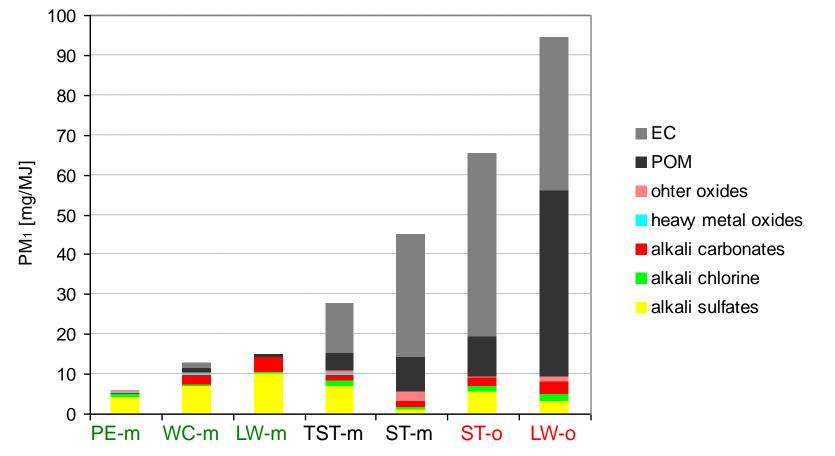
Explanations: fuel: logwood according to ÖNORM M 7132; data related to dry flue gas and 13 vol% O₂; T Feed ... feed temperature; load ... boiler load; the BLPI, TSP and DGI lines indicate the measured PM concentration over the respective sampling period

Results – emission profiles – modern logwood fired stove

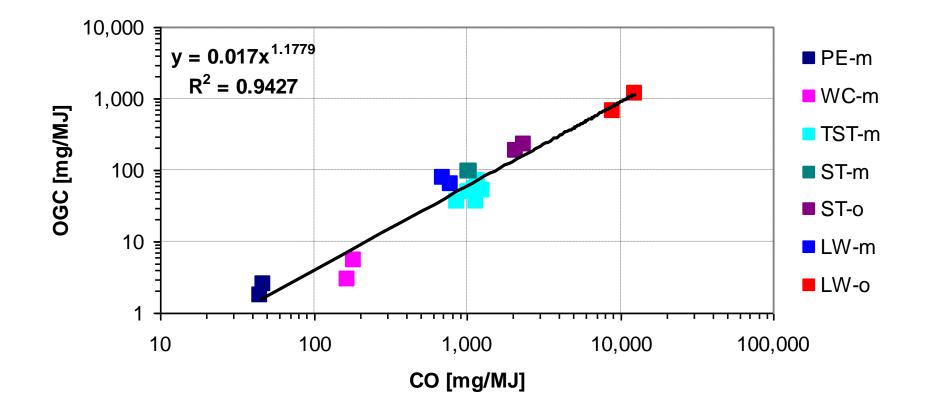


Explanations: fuel: logwood according to ÖNORM M 7132; data related to dry flue gas and 13 vol% O₂; the BLPI, TSP and DGI lines indicate the measured PM concentration over the respective sampling period

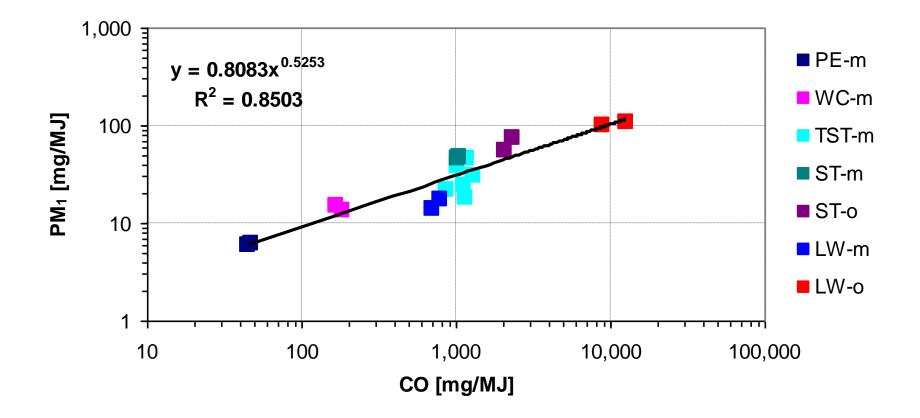
Results – average gaseous and particulate emissions over the test runs performed


Small-scale biomass combustion system	Test run	CO [mg/MJ]	OGC [mg/MJ]	PM₁ [mɡ/MJ]
modern pellet boiler	1	47.1	2.5	6.2
	2	45.4	1.7	6.0
modern woodchip boiler	1	168.1	3.0	15.3
	2	182.2	5.4	13.6
modern logwood boiler	1	700.4	78.7	14.2
	2	793.1	62.4	17.6
modern logwood fired tiled stove	1	1,207.3	52.4	31.3
	2	1,007.5	69.2	28.0
modern logwood fired stove	1	1,048.2	94.2	47.2
	2	1,035.6	95.5	46.1
old logwood fired stove	1	2,355.4	223.9	74.2
	2	2,084.6	185.7	55.5
old logwood boiler	1	12,632.3	1,143.8	106.1
	2	8,969.4	650.8	98.6

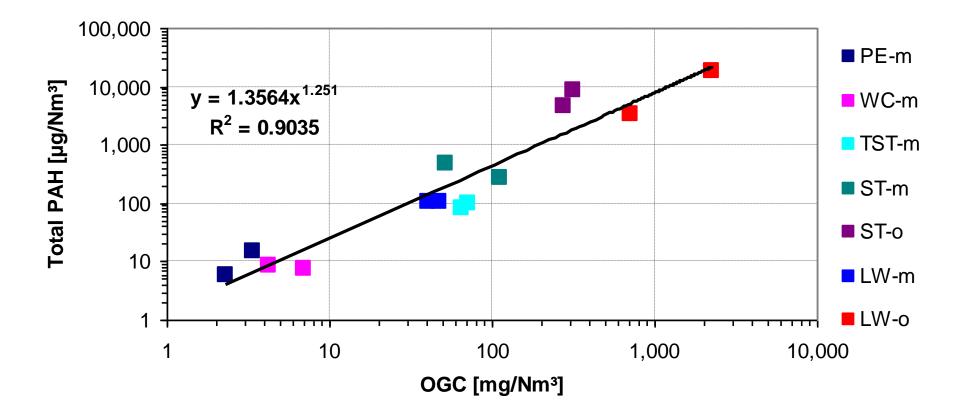
Results – chemical analyses of PM₁ – total composition


Explanations: the OC concentrations were multiplied by 1.4 to obtain particulate organic matter (POM); data in wt% d.b.; PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; TST-m ... modern tiled stove; ST-m ... modern stove; ST-o ... old stove; LW-o ... old logwood boiler Slide 15

Results – PM₁-emissions divided into their chemical compounds


Explanations: the OC concentrations were multiplied by 1.4 to obtain particulate organic matter (POM); PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; TST-m ... modern tiled stove; ST-m ... modern stove; ST-o ... old stove; LW-o ... old logwood boiler Slide 16

Results – correlation – CO vs. OGC

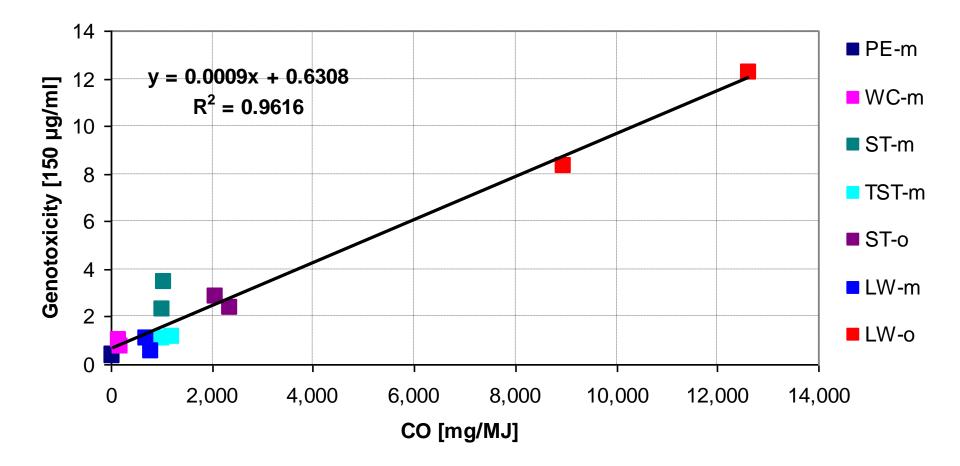

Explanations: mean values over the test runs performed; PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; LW-o ... old logwood boiler; ST-m ... modern stove; ST-o ... old stove; TST-m ... modern tiled stove; statistical evaluation: significance p<0.05

Results – correlation – CO vs. PM₁

Explanations: mean values over the test runs performed; PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; LW-o ... old logwood boiler; ST-m ... modern stove; ST-o ... old stove; TST-m ... modern tiled stove; statistical evaluation: significance p<0.05

Results – correlation – OGC vs. total PAH

Explanations: PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; LW-o ... old logwood boiler; ST-m ... modern stove; ST-o ... old stove; TST-m ... modern tiled stove; statistical evaluation: trend p<0.1



Results – toxicological studies

- Good agreement concerning the results for the 2 samples of each combustion system tested
- Dose dependent responses were gained, which means that with increasing dosage of PM₁ the reactions of the cells increase
- The old technology logwood boiler was in its own class to cause both inflammatory and cytotoxic responses and also caused markedly increased genotoxicity
- PM₁ emission samples from the wood chip and the pellet boiler caused the lowest response levels

Results – correlation – CO vs. Genotoxicity

Explanations: PE-m ... modern pellet boiler; WC-m ... modern wood chip boiler; LW-m ... modern logwood boiler; LW-o ... old logwood boiler; ST-m ... modern stove; ST-o ... old stove; TST-m ... modern tiled stove; statistical evaluation: significance p<0.05

Summary and Conclusions (I)

Burnout quality significantly decreased from

- modern automated boiler systems (CO emissions: 45 to 800 mg/MJ) over
- modern stoves and tiled stoves (CO emissions: 900 to 1,300 mg/MJ) to
- old stoves (CO emissions: 2,100 to 2,400 mg/MJ) and logwood boilers (CO emissions up to 12,600 mg/MJ)
- Average PM₁ emissions ranged from approximately 6 mg/MJ (modern pellet boiler) to about 106 mg/MJ (old technology logwood boiler)
- Good correlations between gaseous and particulate emissions as well as PAH emissions exist

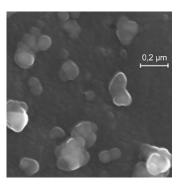
Summary and Conclusions (II)

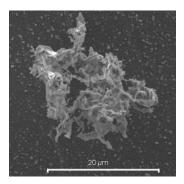
- Inorganic fraction of PM₁ emissions mainly consists of alkaline metal salts (mainly K₂SO₄, KCI, K₂CO₃) and a small amount of heavy metal oxides (mainly ZnO)
- The concentrations of organic carbon and soot in the PM₁ emissions increase with decreasing burnout quality
- The burnout quality achieved as well as type of combustion (batch vs. continuous combustion) affects the relative harmfulness of the particulate emissions
- The composition from incomplete combustion seems to induce stronger toxicological effects than the composition from more complete combustion

Recommendations to reduce PM₁ emissions from small-scale biomass combustion systems

- Substitution of old residential biomass heating systems by new stateof-the-art technologies
- Further development of modern residential biomass combustion systems
 - stoves
 - optimise burnout and minimise carbonaceous PM emissions especially during the ignition but also during the main combustion phase
 - automatic boilers
 - optimise burnout and minimise carbonaceous PM emissions during partial load operation and under transient combustion conditions

Acknowledgement


Bundesministerium für Verkehr, Innovation und Technologie


FORSCHUNGS KOOPERATION

for financing the Austrian participation in IEA BIOENERGY, Task 32

Please visit our stand outside the auditorium!

Thank you for your attention

Dipl.-Ing. Dr. Thomas Brunner

Inffeldgasse 21b, A-8010 Graz, Austria Tel.: +43 (316) 481300-13; Fax: +43 (316) 481300- 4

Email: thomas.brunner@bioenergy2020.eu Homepage: http://www.bioenergy2020.eu

Competence Centers for Excellent Technologies