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Challenges in combustion of solid fuels 

• Process efficiency 
• Pollutant emission control 

– NOx 

– SOx,  HCl 
– Unburned, PAH 
– Soot, other aerosols 
– Heavy metals  

• CO2 emission control 
– Fuel substitution 
– Carbon capture 
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Biomass fuels in Europe 

• Woody biomass fuels: 
– Bark 
– Industrial wood chips 
– Sawdust 
– Forest wood chips 
– Waste wood 
– Pellets, briquettes 

• Herbaceous biomass fuels: 
– Straw, cereals 
– Grasses (miscanthus, giant reed) 

• Alternative biomass fuels: 
– Kernels, shells, olive stones, shea nuts 

 

Frandsen, 2012 
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KCl related issues in biomass combustion 

 KCl  
Ash deposition 

Bed agglomeration 

Corrosion 

SCR deactivation 
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Potassium speciation in ash: concerns 

5 

Deposition Corrosion SCR 
deactivation 

Fly ash 
quality 

KCl XXX XXX XXX XXX 
K2SO4 XX X XXX 
K-silicates XX 
K-alumina-
silicates 

X 



DTU Chemiccal Engineering, Technical University of Denmark 

Combustion of straw on a grate 
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Grate-firing of biomass:  
fate of K, S, Cl 
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Sulfation of KCl 

Proposed gas-phase sulfation mechanism: 
 
SO2+½O2 → SO3            (global, rate limiting) 
KCl + SO3 (+M)→ KSO3Cl (+M)           (fast) 
KSO3Cl + H2O → KHSO4 + HCl           (fast) 
KHSO4 + KCl → K2SO4 + HCl              (fast) 
 
2KCl+SO2+½O2+H2O→K2SO4+2HCl   (net) 
 

KSO3Cl 

KHSO4 

Reference reaction: 
NaOH+HCl → NaCl+H2O  
k298 ∼ 1014 cm3 mol-1 s-1 

Silver et al. (1984) 
Glarborg and Marshall (2005) 

K2SO4 



DTU Chemiccal Engineering, Technical University of Denmark 

A mechanism for sulfation of KCl 

Hindiyarti et al., 2007 

Detailed reaction mechanism: 50 species, 200+ reactions 
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Flame experiments at Lund University 
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• Multi-jet (91) burner  
• Atm pressure flame 
• Hydrocarbon/oxygen/nitrogen 
• Add KCl w/wo SO2 

• Measure temperature, KCl, HCl, SO2  

Li et al. 2013 
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Temperature profiles 
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Effect of SO2 addition on post-flame KCl  

12 Li et al. 2013 
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In-furnace KCl sulfation 
Gas-phase mechanism: 
SO2+Ox → SO3                           
KCl + SO3 (+M)→ KSO3Cl (+M)  
KSO3Cl + H2O → KHSO4 + HCl    
KHSO4 + KCl → K2SO4 + HCl   
K2SO4 → aerosol 

Post-flame sulphation of KCl 

Li et al. (2012) 

   

Gas-solid reaction: 
2KCl+SO2+½O2+H2O→K2SO4+2HCl   (net) 
 

Sengeløv et al. (2013) 

Without SO2 
 
 
 

With SO2 
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From basic science to technology 
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Semi-industrial scale 
experiments  

Model (CFD) 

http://www.google.dk/url?sa=i&rct=j&q=bridge+stylized&source=images&cd=&cad=rja&docid=FMVjqSsZqXf0AM&tbnid=FC4l_dcwKp3NfM:&ved=0CAUQjRw&url=http://themarketingspot.com/2007/11/logo-overthink-branding-doesnt-have-be-hard.html&ei=ziozUcKrLIzXsgbgm4GIAQ&bvm=bv.43148975,d.Yms&psig=AFQjCNFoidQxe8TU1n667YJgjsxMF5Uduw&ust=1362394081347048
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Objectives 

• Develop a simplified model for gas-phase sulphation of KCl 
–Describe oxidation of SO2 to SO3 

–Describe sulphation of KCl by SO3 

–Describe homogeneous nucleation of K2SO4 

• Questions: 
–Is it possible to reduce the detailed model (50 species, 

200+ reactions – without fuel oxidation) to an 
operational size model? 

–Where does the important chemistry occur? 
–Is superequilibrium of radicals important? 

 

15 
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Representing chemistry in CFD 

•Full reaction mechanism 

•Skeletal mechanism 

•Analytically reduced mechanism 

•Global mechanism 

16 

Accuracy 
Complexity 
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Effect of cooling rate on SO3 formation 
- predictions with full mechanism 
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Skeletal mechanism for SO3 formation 
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Minimum reaction subset that provides a 
satisfactory description of the relevant chemistry 
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Radical concentrations during cooling 

19 

0

5 10-5

0,0001

0,00015

100012001400160018002000

Equilibrium
Cooling rate 100 K/s
Cooling rate 200 K/s
Cooling rate 400 K/s
Cooling rate 800 K/s

O
 m

ol
e 

fra
ct

io
n

Temperature / K

0

0,0005

0,001

0,0015

0,002

100012001400160018002000

Equilibrium
Cooling rate 100 K/s
Cooling rate 200 K/s
Cooling rate 400 K/s
Cooling rate 800 K/s

O
H

 m
ol

e 
fra

ct
io

n

Temperature / K

Inlet composition: 
500 ppm SO2,  
4% O2, 10% H2O, 5% CO2; balance N2 

Radical partial equilibrium largely 
maintained during cooling  



DTU Chemiccal Engineering, Technical University of Denmark 

Prediction of SO3 formation 
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• Detailed H2/O2 subset 
• Skeletal SOx subset 
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Prediction of SO3 formation 
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Reduced mechanism: 
 
• Assume HOSO2 in steady state 
• Assume O in partial equil. 
 O2+M = O+O+M 
• Assume OH in partial equil. 
 H2O+½O2 = OH+OH 
• Rates of formation: 
 ωSO2 = – ω1 – ω3 – ω4 

 ωSO3 = ω1 + ω3 + ω4 
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Effect of cooling rate on sulphation rate 
- predictions with full mechanism 
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Skeletal mechanism 
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Predictions of sulphation 
- performance of skeletal mechanism 

24 

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

Full mechanism
Skeletal mechanism

M
ol

e 
fra

ct
io

n

Temperature / K

SO
3

K
2
SO

4

K
2
SO

4
(s)



DTU Chemiccal Engineering, Technical University of Denmark 

Analytically reduced model 

Simplifying assumptions: 
 
• Assume H2SO4 in steady state 
• Assume O in partial equilibrium 

(O2+M = O+O+M) 
• Assume OH in partial equilibrium 

(H2O+½O2 = OH+OH) 
• Replace the fast gas-phase alkali 

sulphation steps by one global 
reaction (G): 

 SO3+2KCl+H2O → K2SO4+2HCl 

Model: 
 
• Components: 
 SO2, SO3, KCl, K2SO4, K2SO4(c)    
 
• Rates of formation: 
 ωSO2 = – ω1 – ω3 – ω4 

 ωSO3 = ω1 + ω3 + ω4 - ωG 
 ωKCl = – ωG 
 ωK2SO4 = ωG – ωNUCLEATION 
 ωK2SO4(c) = ωNUCLEATION 
 

25 
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Predictions of sulphation 
- performance of reduced mechanism 
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Conclusions 

• A simplified model for gas-phase sulphation of KCl in the 
post-flame region has been developed 

–Oxidation of SO2 to SO3 

• O/H radicals in partial equilibrium 
• HOSO2 in steady-state 

–Sulphation of KCl by SO3 

• One-step global reaction for sulphation 
• One-step global reaction for homogeneous 

nucleation of K2SO4 
• Provides a good estimate of the Cl/S ratio in the 

condensed alkali salts 
• Needs refinement to predict concentration profiles 

(time / temperature) 
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