

IEA Task 32 Workshop: "Highly efficient clean log wood stoves"

Performance of foam ceramic elements in log wood stoves

October 29th 2015, Berlin

Technologie- und Förderzentrum

für Nachwachsende Rohstoffe

im Kompetenzzentrum

Hans Hartmann • Robert Mack

Filter material for measurement of long term feasibility

Porosity: 35 ppi

Mack • Hartmann

P 15 B Mc 011 15B Mc 42 Folie 2

Retrofit catalyst for stoves using foam ceramic filters

Product specification data as <u>declared by manufacturer</u>:

Manufacturer	Linder Katalysatoren GmbH	
Thermal resistance	> 1450 °C	
Carrier material	SiC- foam ceramic (SiC – SiO ₂ + 3 C \rightarrow SiC + 2 CO and Al ₂ O ₃) (Al ₂ O ₃ components fired at 2300-2500°C)	
Coating	Platinum (Pt78), Palladium (Pa45), Rhodium (Rh46)	
Reduction	CO, OGC, NO _x , PM	
Structure	> 70% open porous surface	
Porosity	PPI 8, PPI 10, PPI 20, PPI 30,	

Mack • Hartmann

P 15 B Mc 011 15B Mc 43 Folie 3

Construction of an equivalent flow reducion ("Dummy"-Filter)

Mack • Hartmann P 15 B Mc 011 Folie 4

Measurement of filter temperature

Mack • Hartmann

P 15 B Mc 011 15B Mc 44 Folie 5

Determination of the actual flue gas flow path

Mack • Hartmann P 15 B Mc 011 Folie 6

Determination of the actual flue gas flow path (2)

1. Masking the filter plates with air tight tape

Flow rate: 33.9 Nm³/h Draught at socket: -11.9 Pa Pressure drop, burning chamber to socket: 3,8 Pa

Mack • Hartmann P 15 B Mc 011 Folie 7

Determination of the actual flue gas flow path (3)

2. Masking all suspected leakages with air tight tape

Flow rate ↓pressure drop ↑

Flow rate = 21.2 Nm³/h

Draught at socket = -11,8 Pa

Pressure drop, burning chamber to

socket: 9,1 Pa

Determination of the actual flue gas flow path (4)

3. Cutting the air tight tape from the filter plates

Similar flow rate and pressure drop to variant 1.

Flow rate = $33.9 \text{ Nm}^3/\text{h}$

Draught at socket: -12.0 Pa

Pressure drop, burning chamber to socket: 3,9 Pa

Mack • Hartmann P 15 B Mc 011 Folie 9

Flowchart of the testing procedure used

P 15 B Mc 011 15B Mc 060 Folie 10

Part load: time weighted average value of batch 1,2,6,7,8

Mack • Hartmann
P 15 B Mc 011
15B Mc 45
Folie 11

Comparison of foam ceramic filters: Full load cycle (1)

P 15 B Mc 011

15B Mc 46

Folie 12

TFZO

Comparison of foam ceramic filters: Full load cycle (2)

P 15 B Mc 011 15B Mc 047 Folie 13

Comparison of foam ceramic filters: Part load cycle (1)

Mack • Hartmann
P 15 B Mc 011
15B Mc 050
Folie 14

Mack • Hartmann
P 15 B Mc 011
15 B Mc 068
Folie 16

Mack • Hartmann

15 B Mc 011 15 B Mc 074 Folie 18

Mack • Hartmann P 15 B Mc 011 Folie 19

15 B Mc 070

Conclusions

- Expectations for PM reductions by foam ceramic elements were not met (particularly for non-catalytic elements).
- Catalytic foam ceramic elements can reduce gaseous flue gas emissions (CO, OGC).
- Log term monitoring of this effect is required (field tests).
- Regarding the flue gas flow through the foam ceramics there is still some potential for optimisation.
- It is desirable to achieve higher surface temperatures (< 700 °C) on catalytic elements.
- Retrofitting of catalytic foam ceramic elements may be an interesting option.

Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

Thanks for your attention!

www.tfz.straubing.de