CFD simulation of NO_x formation in fixed-bed biomass combustion plants

Claudia Benesch, Robert Scharler, Ingwald Obernberger

BIOS BIOENERGIESYSTEME GmbH

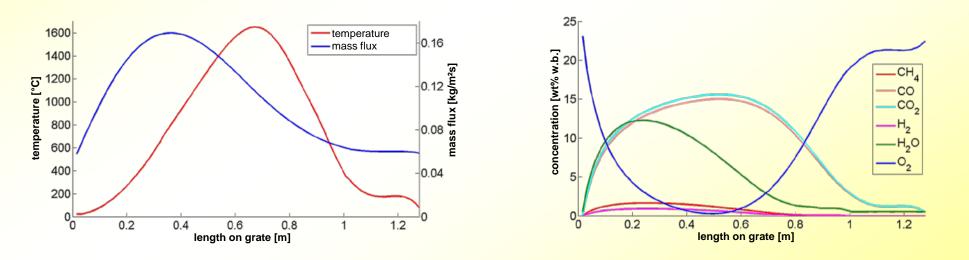
Inffeldgasse 21b, A-8010 Graz, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: benesch@bios-bioenergy.at

HOMEPAGE: http://www.bios-bioenergy.at

Graz

bio<mark>energy</mark>2020+

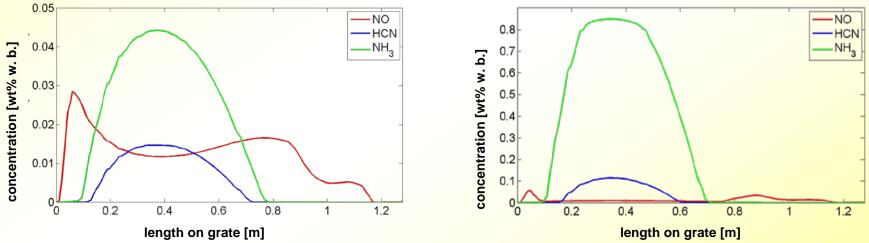
- Scope of work
- Modelling
 - Empirical fixed bed modelling and release of NO_x pre-cursors
 - Modelling of turbulent reactive flow basic combustion modelling
 - CFD NO_x postprocessing
- Case study methodology and discussion of results
- Summary and conclusions



- Presentation of a 3D CFD NO_x formation model (postprocessor) including detailed reaction kinetics for biomass grate furnaces
 - must be applicable to engineering problems
 - with reasonable accuracy
 - with reasonable calculation time
- Application of the CFD NO_x postprocessor
 - Simulation of a pilot-scale biomass grate furnace and comparison with measurement data taken during test runs

Empirical fixed bed model – basic version

- Definition of profiles for the distribution of primary air and recirculated flue gas as well as drying and thermal decomposition of the solid biomass (C, H, O) along the grate on the basis of test runs
- Definition of conversion parameters for CH₄, H₂, CO, CO₂, H₂O, and O₂ in the flue gas released based on literature data and lab-scale experiments
- Stepwise balancing of mass, species and energy



Calculated profiles of temperature, mass flux and species concentration in the flue gas along the grate for grass pellets

Extension of the fixed bed model – release of N species

- The empirical fuel bed combustion model was extended in order to describe the release of N species (NO and NH₃ as well as HCN) which are relevant for the formation of fuel NO_x in biomass grate furnaces
- Conversion parameters (as a linear function of local λ) were defined for the investigated fuels based on lab-scale pot furnace (batch) reactor experiments; NH₃ showed to be the pre-dominant NO_x precursor, HCN and NO were found in lower concentrations

Example: calculated profiles of NH₃, HCN and NO concentration in the flue gas along the grate (left - fuel: corncobs; right - fuel: grass pellets)

BRUNNER Thomas, BIEDERMANN Friedrich, KANZIAN Werner, EVIC Nikola, OBERNBERGER Ingwald. 2012: Advanced biomass fuel characterisation based on tests with a specially designed lab-scale reactor. In: Proc. of the Int. Conference "Impacts of Fuel Quality on Power Production and Environment", September 2012, Puchberg, Austria, ISBN 978-3-9502992-8-1

Modelling of turbulent reactive flow – basic combustion simulation

- Turbulence
 - Gas phase combustion

Realizable k- ϵ model

Eddy Dissipation model (A_{mag} = 0.6) / global methane 3-step mechanism (CH₄, CO, CO₂, H₂, H₂O und O₂)

Radiation

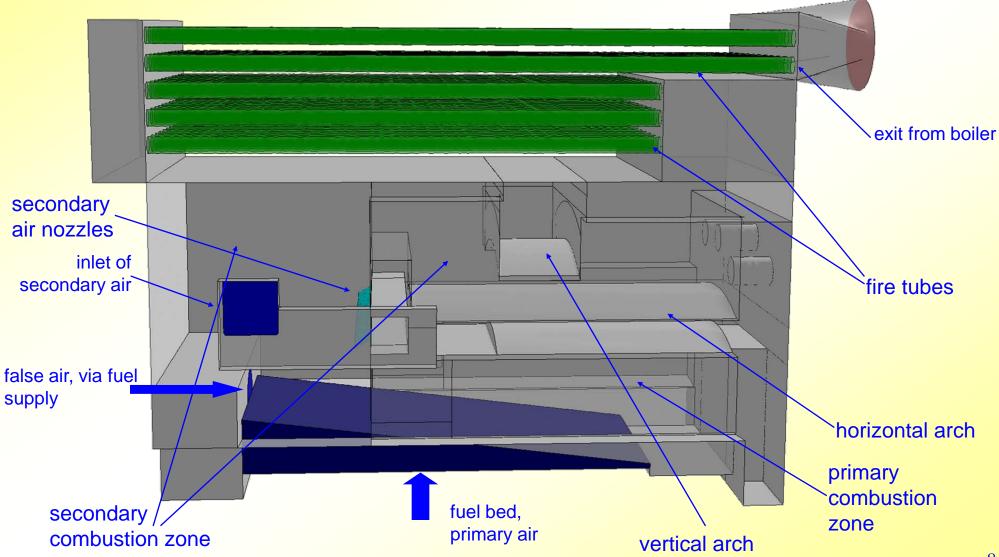
Discrete Ordinates model

Modelling of NO_x formation – postprocessing mode

- Eddy Dissipation Concept (EDC)
- reduced "skeletal Kilpinen97" reaction mechanism (28 species, 104 reactions)
- ISAT (In-Situ Adaptive Tabulation) algorithm for reaction kinetics

ZAHIROVIĆ, 2008: CFD analysis of gas phase combustion and NO_x formation in biomass packed-bed furnances, PhD Thesis ZAHIROVIĆ et al., 2011: Validation of flow simulation and gas combustion sub-models for CFD-based prediction of NO_x formation in biomass grate furnaces. In: Combustion Theory and Modelling (2011), Vol. No. 15, Issue No. 1, pp. 61-87

Eddy Dissipation Concept (EDC)


Extension of EDM; Assumption: reactions occur mainly in the smallest length scales of the turbulent energy cascade (fine structures) where turbulent energy is dissipated; fine structures are treated as ideal reactors (reactants are mixed on a molecular scale)

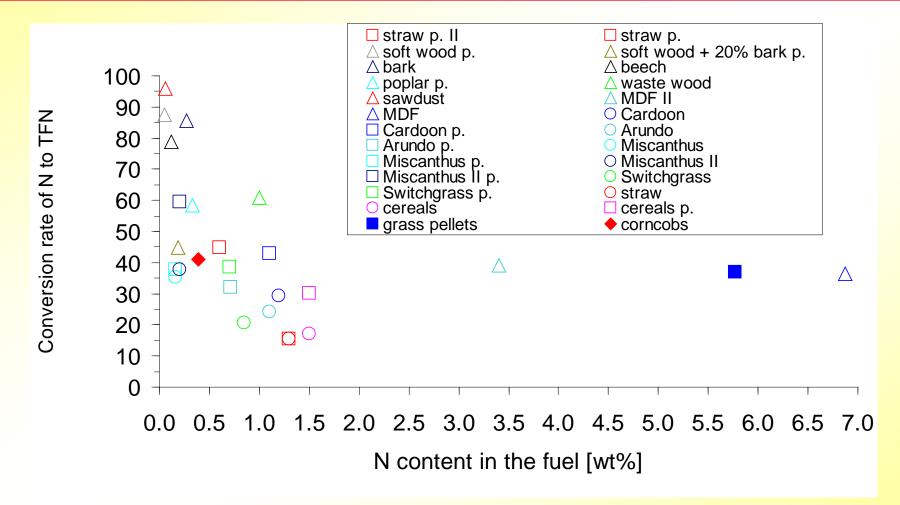
$$R_{i} = \frac{\overline{\rho} \gamma^{2}}{\tau^{*} (1 - \gamma^{3})} \left(Y_{i}^{*} - \widetilde{Y}_{i} \right)$$

- **R**_i...net production rate [kg/m³s], ρ...density [kg/m³],
- τ^* ...residence time in fine structure [s] = (ϵ , ν),
- γ ... volume fraction of fine structure [-] = f(k, ε , ν),
- k...turbulent kinetic energy [m²/s²], ε ...dissipation rate of k [m²/s³],
- v...kinematic viscosity [m²/s],
- Yi...Favre-averages (~) and fine structure- (*) mass fraction of species i [-]
- universal application; interaction between turbulence and reaction kinetics captured; reaction kinetics can be described in detail (necessary for simulation of NO_x formation)
- no calibration of model parameters necessary
- computational time can be long depending on the reaction kinetics (which essentially determine the accuracy of the computation)

CFD model geometry basic variant

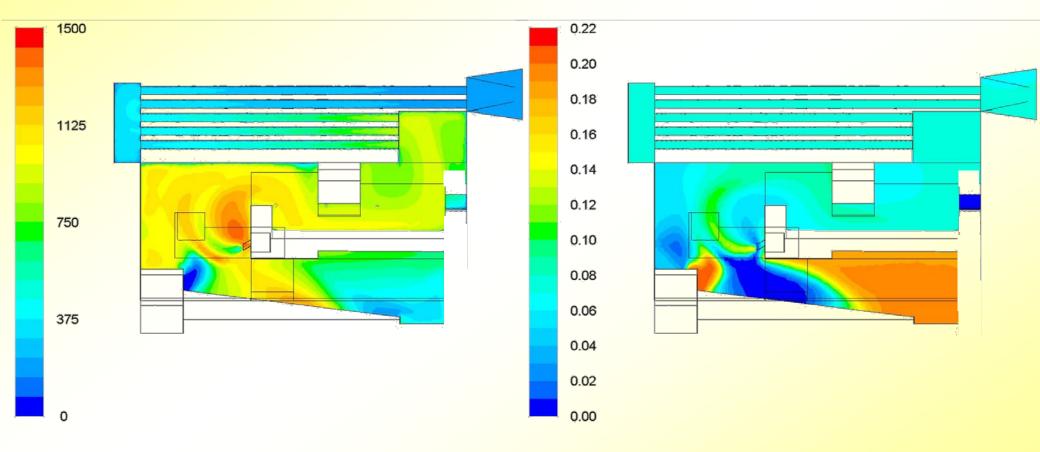
Basic operating conditions Grass pellets composition

Parameter	Unit	Grass pellets basic	
С	[wt.% (d.b.)]	48.17	
Н	[wt.% (d.b.)]	6.82	
0	[wt.% (d.b.)]	31.83	
N	[wt.% (d.b.)]	5.77	
S	[wt.% (d.b.)]	0.69	
ash	[wt.% (d.b.)]	6.72	
moisture	[wt.% (w.b.)]	10.81	
GCV (analysed)	[MJ/kg (d.b.)]	21.20	
GCV (Gaur)	[MJ/kg (d.b.)]	21.40	
NCV	[MJ/kg (w.b.)]	17.30	

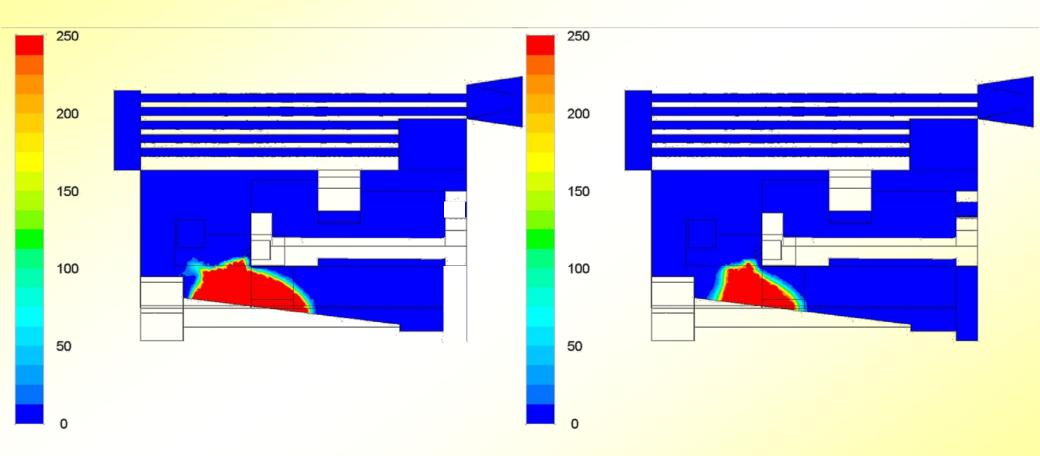


Basic operating data

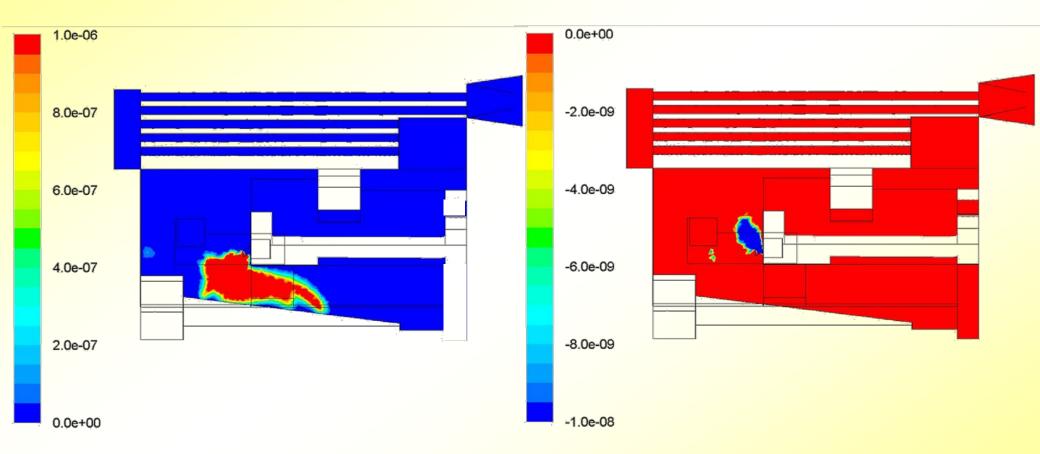
Parameter	Unit	Grass pellets basic
Adiabatic flue gas temperature	[°C]	1,361
Fuel power (related to NCV)	[kW]	432
Flue gas in combustion chamber - total	[kg/h]	949
- Flue gas release from fuel	[kg/h]	85
- Combustion air - total	[kg/h]	864
Primary air (below grate)	[kg/h]	403
Secondary air (nozzles)	[kg/h]	461
recirculated flue gas	[kg/h]	-
Primary stoichiometric ratio	[-]	0.84
Total stoichiometric air ratio	[-]	1.67
O2 fraction at combustion chamber outlet, dry	[Vol% (d.b.)]	8.4


TFN-release rates for different biomass fuels

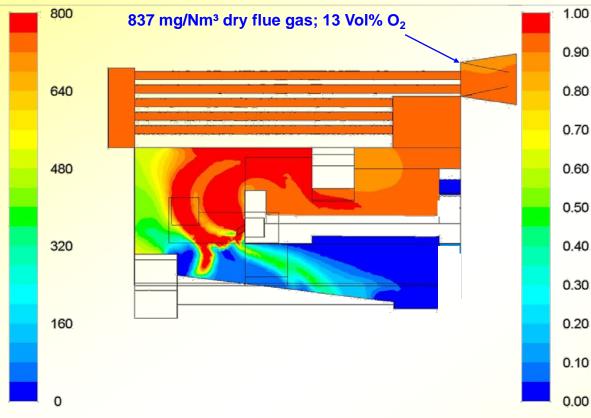
explanation: all data taken from reactor experiments with lab-scale pot furnace; TFN ... mass of all N-moles contained in NO, NH₃, NO₂, HCN und N₂O, released from the fuel bed


Results of basic analysis – temperatures and O₂ concentrations

Iso-surfaces of temperatures [°C] (left) and O_2 concentrations [m³ O_2 / m³ wet flue gas] (right) in the symmetry plane of the combustion chamber and the boiler


Results of basic analysis – NH₃ and HCN concentrations

Iso-surfaces of NH₃ concentrations [ppmv w.b.] (left) and HCN concentrations [ppmv w.b.] (right) in the symmetry plane of the combustion chamber and the boiler


Results of basic analysis – rates of formation of N₂ from NO and of NO from N₂

Iso-surfaces of the reaction rates [kmol/(m³*s)] of the reaction N + NO \rightarrow N₂ + O for the reduction to N₂ (left) and of the reaction N + NO \leftarrow N₂ + O for the formation of NO from N₂ (right) in the symmetry plane of the combustion chamber and the boiler

Results of basic analysis – NO_x concentrations and TFN/TFN_{in} ratio

b.10 0.00 b.] Iso-surfaces of local TFN/TFN_{in} ratios in the symmetry plane of the combustion chamber and the boiler

explanation: all data taken from reactor experiments with lab-scale pot furnace;

TFN ... mass of all N-moles contained in NO, NH₃, NO₂, HCN und N₂O, released from the fuel bed 15

Iso-surfaces of NO_x concentrations [ppmv w. b.] in the symmetry plane of the combustion chamber and the boiler

<u>explanations</u>: NO_x concentrations as sum of NO, NO_2 and N_2O concentrations, all in [ppmv w. b.]

Evaluation of basic analysis:

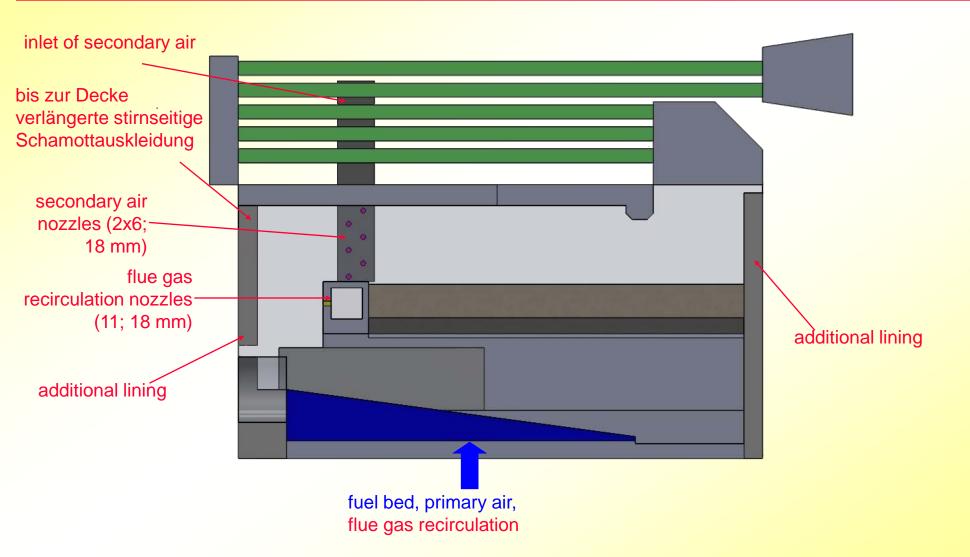
- Small primary combustion zone (small flue gas residence time for reduction)
- thermal NO_x (high local flue gas temperatures)

Measures taken for optimization:

- new position of secondary air nozzles
- flue gas recirculation (temperature control)

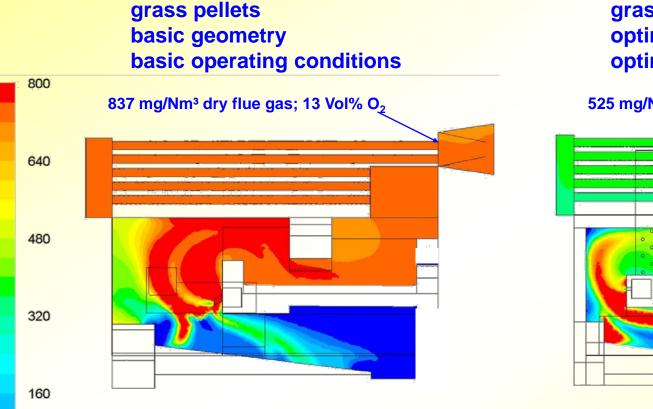
Basic and optimized operating conditions Grass pellets composition

Parameter	Unit	Grass pellets basic	Grass pellets optimised
С	[wt.% (d.b.)]	48.17	49.23
н	[wt.% (d.b.)]	6.82	6.53
0	[wt.% (d.b.)]	31.83	30.41
Ν	[wt.% (d.b.)]	5.77	5.47
S	[wt.% (d.b.)]	0.69	0.65
ash	[wt.% (d.b.)]	6.72	6.80
moisture	[wt.% (w.b.)]	10.81	11.18
GCV (analysed)	[MJ/kg (d.b.)]	21.20	21.20
GCV (Gaur)	[MJ/kg (d.b.)]	21.40	21.46
NCV	[MJ/kg (w.b.)]	17.30	17.28

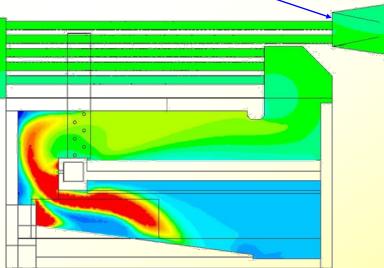


Basic and optimized operating data

Parameter	Unit	Grass pellets basic	Grass pellets optimised
Adiabatic flue gas temperature	[°C]	1,361	1,042
Fuel power (related to NCV)	[kW]	432	370
Flue gas in combustion chamber - total	[kg/h]	949	1,126
- Flue gas release from fuel	[kg/h]	85	72
- Combustion air - total	[kg/h]	864	753
Primary air (below grate)	[kg/h]	403	362
Secondary air (nozzles)	[kg/h]	461	391
recirculated flue gas	[kg/h]	-	301
Primary stoichiometric ratio	[-]	0.84	0.79
Total stoichiometric air ratio	[-]	1.67	1.64
effective stoichiometric ratio on grate ⁽¹⁾	[-]		0.91
effective stoichiometric ratio on grate ⁽²⁾	[-]		1.03
ratio of recirculated flue gas below grate	[-]	-	0.52
flue gas recirculation ratio	[-]	-	0.27
O2 fraction at combustion chamber outlet, dry	[Vol% (d.b.)]	8.4	8.3



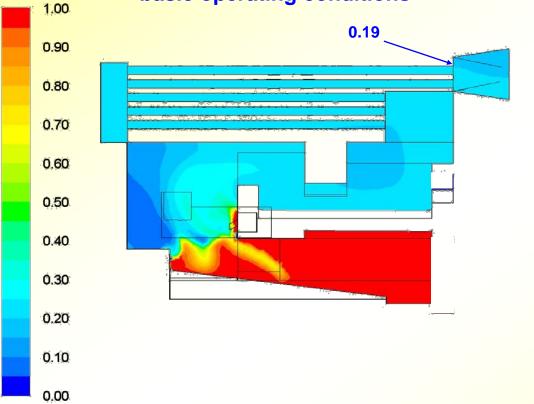
CFD model geometry optimised variant



Results of optimization – NO_x concentrations

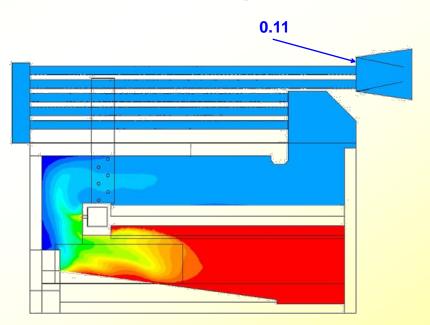
grass pellets optimized geometry optimized operating conditions

525 mg/Nm³ dry flue gas; 13 Vol% O₂


0

Iso-surfaces of NO_x concentrations [ppmv w. b.] in the symmetry plane of the combustion chamber and the boiler

explanations: NO_x concentrations as sum of NO, NO₂ and N₂O concentrations, all in [ppmv w. b.]



grass pellets basic geometry basic operating conditions

Results of optimization – TFN/TFN_{in} ratios

grass pellets optimized geometry optimized operating conditions

Iso-surfaces of local TFN/TFN_{in} ratios in the symmetry plane of the combustion chamber and the boiler <u>explanation</u>: TFN ... mass of all N-moles contained in NO, NH₃, NO₂, HCN und N₂O, released from the fuel bed

Results of optimization – measurement compared to simulation results

	Unit	Grass pellets optimised
simulated NOx-emissions (calculated		525
as NO ₂) at the boiler exit	gas; 13 Vol.% O2	
	mg NO _x /Nm ³ dry fuel	572
measured NO _x -emissions	gas; 13 Vol.% O2	072

- 3D simulations of biomass grate furnaces with the CFD NO_x postprocessor including detailed chemistry have been performed.
- Detailed information of NO_x formation and reduction in grate combustion plants as well as a relevant influencing parameters can be gained.
- Good qualitative and semi-qualitative agreement of simulation results with measurements achieved for different biomass fuels.
- The NO_x postprocessor for biomass grate furnaces is a powerful tool for the design and optimisation of furnace geometries and process control in order to optimize NO_x reduction by primary measures.

Thank you for your attention

Mag. Dr. Claudia Benesch Inffeldgasse 21b, A-8010 Graz, Austria TEL.: +43 (316) 481300-61; FAX: +43 (316) 4813004 Email: benesch@bios-bioenergy.at HOMEPAGE: http://www.bios-bioenergy.at