

bioenergy202

Annual efficiency of small scale biomass combustion systems

Haslinger W¹, Schmidl C¹, Schwarz M¹, Verma V¹, Hebenstreit B¹, Carlon E¹, Golicza L¹, Hartmann H², Brandt J³, Weissinger A⁴, Berger H⁵, Wörgetter M¹

¹ Bioenergy 2020+ GmbH, ² Technologie- und Förderzentrum Nachwachsende Rohstoffe (TFZ), ³ Windhager Zentralheizung Technik GmbH, ⁴ KWB – Kraft und Wärme aus Biomasse GmbH, ⁵ SHT – Heiztechnik aus Salzburg GmbH

IEA Bioenergy Conference 2012, 13-15 Nov 2012, Vienna □□▲=⊤

Content

- Development of a cycle test for biomass heating systems
 - Aim and concept
 - Development of the method
- Tools for the optimization of annual efficiency (experiences from running research projects)
 - Measurements at test stands
 - Measurements in the field
 - (Simulation)
- Summary and conclusions

Load cycle test for small-scale combustion systems

Aim:

Development of a test stand method for determination of annual efficiency and emission factors for small-scale combustion systems

New test should be possibly integrated in the current type testing procedure

Concept:

- Similar to driving cycle test:
 - Development of a load cycle test for combustion systems

New European driving cycle test

Excellent Technologies

Development steps of testing method

- Definition of system boundaries
- Definition of testing procedure
 - for automatically and manually fired systems
 - for full load / buffer and modulating operation
- Development of a simple data analysing software (VBA in MS Excel)
- Preparation of a guideline
- Experimental validation of the method

System boundaries for the testing method

Definition of the load cycle

- Analysis of different type days from literature and field measurements
- Definition of 5 type days and the respective load cycles similar to VDI 4655
- Reduction to load stages according to DIN 4702-8
- Summation of the single day cycles to a reference annual cycle
- Reduction of the 24 hour reference cycle to a 8 hour cycle (→ aim: include into type testing procedure)

Selected results

From a new, recently tested product, $P_N = 15 \text{ kW}$

	Nominal power test	Reference test cycle	Nominal power + heat storage	
Efficiency	89,7	83,1	77,6	[%]
СО	3,2	374,6	62,3	[kg/TJ]
NO _x	76,9	51,7	91,9	[kg/TJ]
Org. C	0,3	9,0	1,1	[kg/TJ]
PM	11,6	9,1	15,3	[kg/TJ]

Note: Data differs from paper due to improved data source and evaluation!

Tools for the optimization of the annual efficiency

- Measurements at test stands
 - + Systematic variation of requirements and configuration
 - + Lot of data → Optimization more efficient
 - Average load profiles, optimal (not real) system integration
- Measurements in the field
 - + Real situation: user, building, system components
 - Measurements difficult, variations not/limited possible

Experiences from projects

MoreBioSystems (COMET, AT)

- Intensive evaluation on test stand (8 pellet boilers, 40 different hydraulic configurations, validation in the field)
- Development of a simulation model (Aim: model based control)

BioMaxEff (FP7–Energy, EU)

- Measurement of annual efficiency and annual emission factors
- 6 test stands, each 24 field and test stand boilers (AT, DE, GB, GR, ES)
- Field monitoring of real operation behaviour (n = 280 / 2000)

IEA Bioenergy Conference 2012

Test stand measurements

System configuration

Test stand Bioenergy2020+

- Heat production
 - Pellet boiler
 - Solar input (S)
- Heat storage
 - HW-boiler: 300l (B300)
 - Buffer: 825l, 1000l, 1500l
- Heat dissipation
 - Variable backflow temperature
 - Variable volume flow

Selection of tested system configurations (test stand and field)

Comparison of results for different system configurations for one boiler

- System efficiencies between 75 and 84%
- Gaps between boiler efficiency and system efficiency between 1.5 and 15% depending on
 75.4
 72.3
 66.3
 74.6
 64.6
 72.5
 - System design (components and implementation)
 - Use patterns
- Key loss (>4%): Missing insulation of pipes
- Hot water boiler only advantegous to buffer integration
- No relevant influence of volume return flow concept
- !Valid for investigated boiler (12 kW, top feed, 60l boiler water volume) and used components (insulation of buffer)!

Field measurements (hardware)

Sensors

- Heat meters
- Net analyser (electric power)
- Room temperature sensors
- Boiler parameters
- Fuel input

Logger

- Computer with storage
- Modem
- Signal converter
- Gateways

Example I: Monitoring results Energy balance

- Building has very low heating demand
- Hot water is almost exclusively produced by an exhaust air heat pump

	Heating kWh	San.water kWh	Fuel kWh
Fall	848	0	1316
Winter	1786	67	2267
Spring	204	57	366

Example II: Important improvement potential obtained from field measurements

Observation:

Extremely variable heating demand

Reason:

Single room control of floor heating with 2-point controler

→ Potential Improvements:

Hysteresis room control Regulating valves Buffer tank

Summary and conclusions

- Measurement of load cycles reveals different results of boilers and systems respectively compared to EN303-5
 - → Load cycle test and variation of system configurations as basis of technological development of biomass boilers
 - → Specific boilers require specific system configuration for optimum performance
- Field measurements can be used for validation of test stand measurements and...
 - → Errors in the system integration can only be revealed by field measurments

Acknowledgements

Funding bodies

Federal Ministry for Transport, Innovation and Technology

Company partners

Acknowledgements

Scientific Partners

bioenergy2020+

Thank you!

Walter Haslinger

Area Manager Sub-Area Small scale combustion systems

BIOENERGY 2020+ GmbH, Location Wieselburg

Tel: +43 7416 52238-20

walter.haslinger@bioenergy2020.eu

