International Energy Agency Bioenergy Agreement Task 19 Biomass Combustion

Workshop Biomass Combustion Modelling

Arranged by: Sjaak van Loo and Jaap Koppejan TNO-MEP, The Netherlands

Content:

Minutes of the Meeting, Biomass Combustion Modelling Workshop

> Friday, June 9, 2000 Melia Lebreros hotel Sevilla, Spain

IEA Bioenergy Task 19 Biomass Combustion Modelling Workshop June 9, 2000, Sevilla, Spain

Content

Programme

Summary of the workshop

- Opening, Sjaak van Loo, leader IEA Bioenergy Task 19
- Background of Task 19 and results of questionnaires, Jaap Koppejan (NL)
- Presentations of individual models
- Discussion on options for mutual co-operation and Task 19 involvement
- Conclusion

ANNEX 1. Attendance list

- Organisations involved in modelling thermal conversion of biomass
- Representatives from IEA Bioenergy Task 19

ANNEX 2: Results of the questionnaire on modelling thermal conversion of biomass

ANNEX 3: Copies of the overheads presented

- Modelling of biomass and waste combustion at TNO A.R.J. Arendsen, TNO, Netherlands
- Biomass Modelling Tools at Åbo Akademi Edgardo G. Coda Zabetta, Åbo Akademi, Finland
- Modelling of batch combustion processes Øyvind Skreiberg, Norwegian University of Science and Technology, Norway
- Optimisation of Low-NOx biomass grate furnaces with CFD modelling Robert Scharler, TU Graz, Austria
- Mathematical models for design and development of fixed-bed gasification systems Colomba Di Blasi, Università degli Studi di Napoli "Federico II", Italy
- A numerical model for fixed bed combustion Jenny Larfeldt, TPS, Sweden
- CFD modelling of biomass combustion Xue-Song Bai, Lund Institute of Technology, Sweden
- Modelling of Solid Fuel Conversion and Transport with TOSCA Bernhard Peters, FZK, Germany
- Modelling wood combustion in grate furnaces by calculation of the solid fuel transport and conversion on the grate followed by CFD calculations in the gas phase Thomas Nussbaumer, Verenum, Switzerland
- Straw Bed Conversion Robert van der Lans, CHEC, Inst. for Kemiteknik, DTU, Denmark
- Application of the 3D Combustion Code AIOLOS to Small Scale and Industrial Combustion Systems Sven Unterberger, IVD, Stuttgart, Germany

Programme

Friday June 9, 2000, Location: Melia Lebreros hotel

- 9:00 Opening, Sjaak van Loo, leader IEA Bioenergy Task 19
- 9:15 Background of Task 19 and results of questionnaires, Jaap Koppejan (NL)
- 9:30 Presentations of individual models
 - Modelling of biomass and waste combustion at TNO, A.R.J. Arendsen, TNO, Netherlands
 - Biomass Modelling Tools at Åbo Akademi, Edgardo G. Coda Zabetta, Åbo Akademi, Finland
 - Modelling of batch combustion processes, Øyvind Skreiberg, Norwegian University of Science and Technology, Norway
 - Optimisation of Low-NOx biomass grate furnaces with CFD modelling, Robert Scharler, TU Graz, Austria
 - Mathematical models for design and development of fixed-bed gasification systems, Colomba Di Blasi, Università degli Studi di Napoli "Federico II", Italy
 - A numerical model for fixed bed combustion, Jenny Larfeldt, TPS, Sweden
- 10:20 Coffee
- 10:40 Presentations of various models (ctd)
 - CFD modelling of biomass combustion, Xue-Song Bai, Lund Institute of Technology, Sweden
 - Modelling of Solid Fuel Conversion and Transport with TOSCA, Bernhard Peters, FZK, Germany
 - Modelling wood combustion in grate furnaces by calculation of the solid fuel transport and conversion on the grate followed by CFD calculations in the gas phase, Thomas Nussbaumer, Verenum, Switzerland
 - Straw Bed Conversion, Robert van der Lans, CHEC, Inst. for Kemiteknik, DTU, Denmark
 - Application of the 3D Combustion Code AIOLOS to Small Scale and Industrial Combustion Systems, Sven Unterberger, IVD, Stuttgart, Germany
- 11:30 Discussion on options for mutual co-operation and Task 19 involvement
- 12:30 Joint lunch with participants in modelling workshop and Task 19 members

Opening, Sjaak van Loo, leader IEA Bioenergy Task 19

The modelling workshop was opened by Sjaak van Loo, welcoming all modellers and IEA Bioenergy Task 19 members and presenting the agenda. The workshop is part of the Task 19 activity on biomass combustion modelling and is a follow up activity of the questionnaire that was send out and evaluated in 1999. The role of Task 19 in this matter is to identify organizations that are involved in modelling biomass combustion processes, and provide a platform for exchanging information amongst these organisations.

Background of Task 19 and results of questionnaires, Jaap Koppejan (NL)

Prior to the organisation of the Sevilla modelling workshop, a questionnaire was send out amongst 59 R&D organisations, manufacturers etc. in the member countries to evaluate the contents and status of ongoing modelling projects and programmes. 38 questionnaires on modelling projects were returned to IEA. The results of the questionnaires were evaluated and shared with the respondents. A summary is attached in annex 2; the full report is available through IEA Bioenergy Task 19.

After the evaluation of the questionnaires, a subset of 13 organisations with models with common focus was selected, namely the modelling of biomass combustion and the calculation of emissions. These 13 organisations were invited to participate in the workshop, and 11 organisations decided to participate. Most of these models are on a process scale, describing wood combustion on a grate or in a fluidised bed. The majority of models is

- Still under development, validation or a detailed application
- Used for process design and meant for the calculation of emissions.
- CFD-based or dynamic physical
- About half of the models include drying, pyrolysis and gasification prior to combustion

Presentations of individual models

The participants presented the specifications of 11 individual models. Copies of the explaining overheads that were presented are included in the annex.

The models presented vary from the thermal decomposition of a single particle to a description of a full combustion system with a grate and secondary combustion in the gas phase. All models are applied for specific purposes, such as a better understanding of the principles of combustion to system and apparatus design for maximum efficiency and minimal emissions or the design of improved control systems and simulators for training purposes.

A significant amount of models that were presented describe biomass combustion in a grate fired boiler. While CFD models are often applied for modelling the behaviour of secondary combustion in the gas phase, the devolatilisation speed of the fuel bed is usually described by static or dynamic physical and chemical models. Depending on the application, the description of the fuel bed model can be fairly superficial (e.g. the TNO-model or the model of TPS) or detailed (e.g. the model of Dr. Peters, Research Centre Karlsruhe).

Discussion on options for mutual co-operation and Task 19 involvement

It was observed that the type of the model that is used and the accuracy of the outcome is closely related to the application for which the model should be used. One can distinguish between empirical, zero dimensional models and detailed application models.

While many application models are based on a CFD calculation code, the level of physical and chemical knowledge built into the CFD code may vary from one model to another, depending on the application of the model. Most models are developed together with an equipment manufacturer to provide insight in the effects of boiler modification on combustion quality. Although the accuracy of the models is typically insufficient to calculate emissions from a given combustion installation, modelling may be very instrumental in evaluating the effects of boiler modification on combustion quality (e.g. by placing additional nozzles or a baffle). One reason for the inaccuracy of CFD codes is the fact that most of these codes have in the past been developed for coal combustion.

However, there is still a great need for knowledge on the consequences for selecting a set of physical and chemical mechanisms on the accuracy of the model, depending on the type of application. While the chemical mechanisms are usually quite well understood and described, the physical mechanisms (turbulence, convections, etc) are much less understood. A steering guide that tells which model to use for what kind of situation would be welcome.

Many models are based on empirical results, and the accuracy of certain assumptions or equations chosen is unknown. Closely related to this is the problem that it may be difficult to solve some complex or implicit thermodynamic equations. It was therefore suggested to communicate proven approaches in this field.

In order to cross-check the validity of the various models applied, it was suggested to perform a validation test. Modelling a whole furnace makes it unclear where errors occur, therefore a validation test should be simple and describe only a submodel of an installation. It was agreed that the devolatalization of biomass on a fuel bed is least understood (e.g. the great influence of alkalis on the char yield) and therefore difficult to describe and calculate. However, since the data requirements of the various models for the fuel bed vary quite a bit, lots of data would be needed and it is questionable whether such a data set would be available at all. Other difficulties generally felt are related to the bed dynamics and the radiation mechanisms.

All participants are asked to list and prioritise the difficulties felt with the development of combustion models, in order to identify eventual follow-up activities.

Conclusion

The IEA Task 19 workshop on biomass combustion provided a floor for developers of various biomass combustion models from different organisations and countries to exchange experiences and difficulties in an open setting, which was much appreciated. It is anticipated that some of the problems identified during the discussions may be surmounted through bilateral or multilateral future cooperation.

ANNEX 1. Attendance list

Organisations involved in modelling thermal conversion of biomass

Sebastian Kaiser research assistant Vienna University of Technology Institute of Chemical Engineering, Fuel and Environmental Technology Getreidemarkt 9/159 1060 Vienna Tel.: +43-1-58801/159-23 Fax.: +43-1-58801/159-99 http://www.vt.tuwien.ac.at/ skaiser@mail.zserv.tuwien.ac.at

Dipl-Ing. Robert Scharler Institute of Chemical Engineering Fundamentals and Plant Engineering Technical University of Graz Inffeldgasse 25 A - 8010 GRAZ Austria tel +43 316 481300-31 fax +43 316 481300-4 scharler@glvt.tu-graz.ac.at

Dipl-Ing. Weissinger Institute of Chemical Engineering Fundamentals and Plant Engineering Technical University of Graz Inffeldgasse 25 A - 8010 GRAZ Austria tel +43 316 481300 fax +43 316 4813004

Dr.-Ing. Bernhard Peters Institut für Kern- und Energietechnik, Forschungszentrum Karlsruhe GmbH Postfach 3640 76021 Karlsruhe, Germany Tel.: +49 7247 823491 Fax.: +49 7247 824837 b.peters@iket.fzk.de http://www.fzk.de/iatf/verbrennung Dipl.Ing. S. Unterberger IVD, University of Stuttgart Pfaffenwaldring 23 D-70550 Stuttgart Germany tel +49 711 685 3572 fax +49 711 6853491 unterberger@ivd.uni-stuttgart.de

Mr. Roland Berger Department of Decentralised Energy Conversion Technology Institute of Process Engineering and Power Plant University of Stuttgart Pfaffenwaldring 23 D-70550 Stuttgart Germany tel +49 711 685 3492 fax +49 711 685 3491 berger@ivd.uni-stuttgart.de

Robert van der Lans Research Assistent Professor, CHEC, Inst. for Kemiteknik, DTU 2800 Lyngby (B229) Denmark tel +45 45 88 3288 fax +45 45 88 2258 RL@kt.dtu.dk

Prof. C. Di Blasi Professor, Universitá Degli Studi di Napoli (IT) Piazzale V. Tecchio 80 IT-80125 Napoli Italy tel +39 81 7682232 fax +39 81 2391800 diblasi@unina.it Richard Arendsen TNO-MEP Postbus 342 7300 AH Apeldoorn Netherlands tel +31 55-5493039 fax +31 55 5493740 A.R.J.Arendsen@mep.tno.nl

Xue-Song Bai Associate Professor Lund Institute of Technology (LTH) Division of Fluid Mechanics box 118 22100 Lund Sweden tel: +46 46 2224860 fax: +46 46 2224717 bai@jones.vok.lth.se Ms. Jenny Larfeldt TPS Termiska Processer AB Studsvik S-61182 NyKöping Sweden tel +46-155-221308 fax +44-155-221398 jenny.larfeldt@tps.se

Mr. Edgardo G. Coda Zabetta Research Associate Åbo Akademi - Process Chemistry Group Combustion and Materials Research Lemminkäisenkatu 14-18 B FIN-20520 TURKU FINLAND Phone +358 2 215 4930 Fax +358 2 215 4780 edgardo.zabetta@abo.fi

Representatives from IEA Bioenergy Task 19

Peter Coombes Business Development Analyst, Delta Electricity Level 12, Darling Park 201 Sussex Street Sydney 2000 Australia tel: +61 2 9285 2789 fax: +61 2 9285 2780 Peter.Coombes@de.com.au

Dr. Ingwald Obernberger Institute of Chemical Engineering Fundamentals and Plant Engineering Technical University of Graz Inffeldgasse 25 A - 8010 GRAZ Austria tel +43 316 481300 fax +43 316 4813004 obernberger@glvt.tu-graz.ac.at

Yves Schenkel Département de Génie Rural Centre de Recherche Agronomiques Chaussée de Namur, 146 B 5030 Gembloux tel. +32 81 61 2501 fax +32 81 61 5847 schenkel@cragx.fgov.be Thomas Nussbaumer VERENUM Langmauerstrasse 109 CH-8006 ZÜRICH Switzerland tel +41 1 3641412 fax +41 1 3641421 verenum@access.ch

Dr Philipp Hasler VERENUM Langmauerstrasse 109 CH-8006 ZÜRICH Switzerland tel +41 1 3641412 fax +41 1 3641421 verenum@access.ch

Henrik Houmann Jakobsen dk-TEKNIK Gladsaxe Mollevej 15 DK-2860 SOBORG Denmark tel +45 39 555999 fax +45 39 696002 hhouman@dk-teknik.dk Sjaak van Loo TNO-MEP P.O. Box 342 7300 AH APELDOORN Netherlands tel +31 55 5493745 fax +31 55 5493740 S.vanLoo@mep.tno.nl

Jaap Koppejan TNO-MEP P.O. Box 342 7300 AH APELDOORN Netherlands tel +31 55 5493167 fax +31 55 5493740 J.Koppejan@mep.tno.nl

Øyvind Skreiberg, Ph.D. Chief Engineer The Norwegian University of Science and Technology 7034 Trondheim Norway tel +47 73 597200 fax +47 73 598390 Oyvind.Skreiberg@tev.ntnu.no

John Gifford Forest Research Institute Private Bag 3020 ROTORUA New Zealand tel +64 7 3475877 fax +64 7 3479380 john.gifford@forestresearch.co.nz Claes Tullin Swedish National Testing and Research Institute Box 857 S-501 15 BORAS Sweden tel +46 33 16 5555 fax +46 33 131979 claes.tullin@sp.se

Heikki Oravainen, senior research scientist VTT Energy, Fuels and Combustion P.O. Box 1603 FIN-40101 Jyväskylä Finland tel +358 14 672532 fax +358 14 672596 Heikki.Oravainen@vtt.fi

Larry Baxter Principal Member of Technical Staff Sandia National Laboratories MS 9052 7011 East Avenue Livermore CA 94550 USA tel +1 925 294-2862 fax +1 925 294-2276 baxter@sandia.gov ANNEX 2: Results of the questionnaire on modelling thermal conversion of biomass

response to questionnaire

 sent out:
 returned:

projects that include modelling:

13 13

13

1. state of development

a. definition of goals:	0	0%
b. definition of system boundaries:	0	0%
c. selection of model type:	0	0%
d. determination of model input:	1	8%
e. experimentation:	2	15%
f. development:	7	54%
g. implementation:	4	31%
h. validation:	6	46%
i. application:	8	62%
j. others:	0	0%

2. What is the model type?

a. expert/data based:	0	0%
b. stationary empirical:	0	0%
c. dynamic empirical:	1	8%
d. thermodynamic:	0	0%
e. stationary physical / chemical:	2	15%
f. dynamic physical / chemical:	4	31%
g. CFD:	9	69%
h. fuzzy logic:	0	0%
i. neural network:	0	0%
j. others:	0	0%

3. Application of the model

a. fundamental understanding physics:	4	31%
b. process design:	8	62%
b1. thermodynamic:	3	23%
b2. energetic:	3	23%
b3. exergetic:	0	0%
b4. process control:	3	23%
c. scaling up:	4	31%
d. selection suitable biomass:	1	8%
e. calculation of emissions:	13	100%
f. operator training:	0	0%
g. operator advise system:	0	0%
h. start-up/shut down simulation:	1	8%
i. economic evaluation:	1	8%
j. others:	2	15%

39 calculation of gas composition, behaviour of fuel bed

40 calculation of combustion process

-		
g. others:	2	15%
f. plant (comb. of operation units):	1	8%
e. system (combination of procesess):	4	31%
d. operation unit:	4	31%
c. process:	4	31%
b. particles (0.5 mm):	2	15%
a. micro scale (Kolgomorov):	1	8%

36 large particles

37 Scale is dependent on the accuracy and computer limits

5. What parts of the process are modelled?

a. dryin	g:	7	54%	
b. feed	system:	2	15%	
	b1. screw feeder:	0	0%	
	b2. lock hoppers:	1	8%	
	b3. others:	0	0%	
			15%	
c. pyrol	ysis:	6	46%	
	c1. fast:	3	23%	
	c2. slow:	2	15%	
	c3. others:	0	0%	
d. gasif	ication:	6	46%	
	d1. atmopspheric:	4	31%	
	d2. pressurised:	1	8%	
	d3. air blown:	3	23%	
	d4. oxygen blown:	2	15%	
	d5. indirect heating:	0	0%	
	d5. steam reforming:	2	15%	
	d6. others:	0	0%	
e. com	oustion:	13	100%	
	e1. grate:	6	46%	
	e2. underfeed stoker:	2	15%	
	e3. fluidised bed:	2	15%	
	e4. others:	4	31%	
	1 wood log combustion			
	36 fixed bed, moving bed (cur	rent/co-current)		

37 gas combustion chamber below the grate (down-draught firing)

40 homogeneous gas phase combustion in the burnout zone of domestic wood stoves

f. flue gas cleaning:	4	31%
f1. wet scrubber:	1	8%
f2. cyclone:	1	8%
f3. hot gas cleaning:	1	8%
f4. denox:	0	0%
f5. (tar) cracking:	2	15%
f6. others:	0	0%
g. energy conversion:	1	8%
g1. indirect turbine:	1	8%
g2. "closed loop" turbine:	0	0%
g3. gas motor:	1	8%
g4. IGCC:	1	8%
g5. co-combnustion:	0	0%
g6. steam cycle:	1	8%

h. control system:	0	

6. on what kind of biomass is the model based?

g7. others:

general	2
straw	1
wood	5
wood, bark	1
wood, but other biomass can also be modeled	3

0

0%

0%

7. How is the transport of the biomass modelled?

a. not modelled:	4	31%
b. grate:	6	46%
c. fluidised bed:	4	31%
d. packed bed:	2	15%
e. circulating fluidised bed:	1	8%
f. rotary kiln:	0	0%
g. others:	1	8%
36 moving bed		

8. What are the most important input variables of the model?

1	fuel composition burning rate CO2 level temperatures
4	properties chemical data of thermal degradation
5	Furnace geometry, air and flue gas injectors, mass and energy fluxes from fuel bed
7	Input to the combustion model: - Composition of biomass - Air ratio, distribution and velocity - depth of bed material in case of fluid bed
	Input to the emission model: - Composition of the flue gas (NOx, dust etc.)
10	MORE THAN ONE MODEL: amount of biomass
14	air flow rate and air inlet temperature, fuel properties
22	heat/mass transfer coefficients, physical properties of biomass, kinetic constants
24	 process conditions (temp, pressure) furnace geometry and dimensions, fuel and air througput and geometry
35	chemical input geometrical data operating conditions
36	particles of the media, chemical kinetics, composition, (fuel-gaseous phase), load
37	Gas mixture flows of primary and secundary air temperature of the gas flows and some surfaces
39	fuel composition, furnace geometry, wall temperatures
40	gas concentration, volume flow (velocities), temperature (gas+wall) of all inlets, geometry

9. What are the most important output variables of the model?

1	emission levels in different denominations conversion factors efficiencies
4	specific concentrations over fuel bed rate of conversion
5	Flow and temperature profiles over the furnace, composition of the flue gas in different sections of the furnace, residence time distributio/n of gas and particles in the furnace are main present aims. Moreover the use of the output data as input data for NOx reduction kinetic calculations with Chemkin and/or with Fluent (postprocessing) are intended.
7	Output of the combustion model: - combustion parameters, e.g. oxygen contents Output of the emission model: - Composition of the flue gas (NOx, dust etc.)
10	various

14	pyrolysis and combustion rate combustion temperatures
22	temperature and specific progress, gas composition, liquid yields, etc.
24	 concentrations of minor and major components geometrical distribution of flow, temperature and concentration
35	velocity and turbulence temperature species particle distribution, momentum and temperature emission levels
36	temperature profiles (gas, solid) and concentrations (CO, CO2, CxHy, O2, H2O, H2, C) as function of time
37	Flow pattern and mixing Gas concentrations Temperatures
39	gas composition released by the fuel bed, combustion behaviour of different fuels
40	gas concentration + temperature fields in the burnout zone, mixing between combustible gases and air

10. What language is used to program the model?

a. no programme language used:	1	#Naam?
b. Fortran:	10	77%
c. Basic / visual basic:	0	0%
d. pascal / object pascal:	0	0%
e. C / C++:	3	23%
f. Others:	1	8%

5 Fluent 5 (Fluent UNS) is written in C/C++. Submodels developed at the Technical University of Graz, Work Group Thermal Biomass Utilization, to be implemented in Fluent 5, will also be written in C/C++. The model concerning fixed-bed biomass combustion (drying, volatilization, char combustion) on the grate will be developed with Chemkin Digital Visual Fortran and Visual C++.

11. What commercial package is used

a. no commercial package used:	6	46%
b. MS Excel:	2	15%
c. Matlab:	0	0%
d. Matcad:	0	0%
e. ACSL:	0	0%
f. ASPEN:	1	8%
g. SPEED-UP:	0	0%
h. PC-TRAX:	0	0%
i. Others:	7	54%

4 for CFD: TASCFLOW

5 Fluent (Fluent 5, Gambit), Chemkin. Additional programmes: Digital Visual Fortran, Visual C++ (see also 10.), Microsoft Excel.

	7	not used, but output can be read into these packages
	24	chemkin, fluent
	36	Fluent, Limex, Phoenics
	39	developed model will be coupled with FLUENT
	40	ALOLOS programme, developed by IVD
1		

12. Under what operating system does the model work?

a. UNIX:	9	69%
b. Linux:	2	15%
c. MS DOS/MS Windows 3.11:	3	23%
d. MS Windows 95/98:	4	31%
e. MS Windows NT:	6	46%
f. Mac:	0	0%
g. VAX/VMS:	1	8%
h. others, e.g.:	0	0%

13. What is the user interface?

a. no user interface (file-input):	10	77%
b. keyboard:	5	38%
c. graphical (mouse controlled):	5	38%
d. others:	1	8%
37 graphical is under development		

14. What is the availability of the model?

a. free, with source code:	2	15%
b. free, without source code:	2	15%
c. commercial:	5	38%
d. not available, calculation by order:	5	38%
e. others:	4	31%

4	not decided yet
14	not available yet
22	literature

57	for research only, a small fee for documentation and administration is required. See www.cranfield.ac.uk/sme/sofie
Are t	nere references to literature in which the model is described?
1	PhD. thesis: Theoretical and experimental studies on emissions from wood combustion, by Øyvind Skreiberg
4	For model of decomposition of wood: not yet
	 For CFD applications: 1) Bruch, C.; Nussbaumer, Th.: CFD Modelling of Wood Furnaces. Biomass for Energy and Industry. 10th European Conference and Technology Exhibition, June 8-11, 1998, Würzburg, Germany, 1366-1369 2) Bruch, Ch.; Nussbaumber, Th.: verbrennungsmodellierung mit CFD zur optimierten Gestaltung von Holzfeuerungen. Innovationen bei Holzfeuerungen und Wärmekraftkopplung, 5. Holzenergiesymposium, 16. Oktober 1998 ETH Zürich, Bundesambt für Energie, Bern 1998, 189-202
5	FLUENT Inc., 1996: FLUENT/UNS & RAMPANT 4.2 User's Guide Volume 1-4, Lebanon, USA
	FLUENT Inc., 1998: FLUENT 5 User's Guide Volume 1-4, Lebanon, USA
	FLUENT Inc., 1998: GAMBIT Modeling Guide, Lebanon, USA
	FLUENT Inc., 1998: GAMBIT Command Reference Guide, Lebanon, USA
	FLUENT Inc., 1998: GAMBIT User's Guide
	BRAY, K. N., PETERS, N., 1994: Laminar Flamelets in Turbulent Flames. In P. A. Libby and F. A. Williams, editors, Chemically Reacting Flows, Academic Press. ISBN 3-54010192-6
	FERZINGER Joel H., PERIC Milovan, 1996: Computational Methods for Fluid Dynamics, Springer, Berlin, ISBN 3-540-59434-5
	GHIA, U., GHIA, K. N., SHIN, C. T., 1982: High-Re Solutions for Incompressible Flow Using the Navier Stokes Equations and a Multigrid Method, Journal of Computational Physics, 48, pp. 387-411
	LAUNDER, B. E., SPALDING, D.B., 1972: Lectures in Mathematical Models of Turbulence, Academic Press, London, England.
	MAGNUSSEN, B. F., HJERTAGER, B. H., 1976: On mathematical models of turbulent combustion with special emphasis on soot formation and combustion, 16th Symp. on Combustion, The Combustion Institute
	OBERNBERGER Ingwald, 1997: Nutzung fester Biomasse in Verbrennungsanlagen unter besonderer Berücksichtigung des Verhaltens aschebildender Elemente, Schriftenreihe "Thermische Biomassenutzung", Band 1, ISBN 3-7041-0241-5, dbv-Verlag der Technischen Universität Graz, Graz, Österreich
	PATANKAR S. V., 1985: Numerical Heat Transfer and Fluid Flow, McGraw-Hill Book Company, New York, ISBN 0-07048740-5
	RHIE, C. M., CHOW, W. L., 1983: Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA Journal 21(11): pp. 1525-1532, ISSN 0001-1452
	SCHARLER Robert, OBERNBERGER Ingwald, 1998: Temperatur- und Strömungssimulation in einer Biomasse-Wanderrostfeuerung, Tätigkeitsbericht III (internal report), Institute for Chemical Engineering Fundamentals and Plant Engineering, Technical University of Graz, Austria.
	WARNATZ Jürgen, MAAS Ulrich, 1993: Technische Verbrennung, Springer, Berlin, ISBN 3-540- 56183-8
	WEISSINGER Alexander, OBERNBERGER Ingwald, Günter LÄNGLE, Alfred STEURER, 1998:. NOx - reduction by primary measures for grate furnaces in combination with in-situ measurements in the hot primary combustion zone and chemical kinetic simulations. In: Proceedings of the 10th European Bioenergy Conference, June 1998, Würzburg, Germany, C.A.R.M.E.N. (ed), Rimpar, Germany
	WENDT J.F., 1992: Computational Fluid Dynamics, Springer, Berlin, ISBN 3-54053460-1

Solantausta, Y., Bridgwater, A., Beckman, D., Electricity production by advanced biomass power systems. Espoo 1996, VTT Research Notes 1729. 115 p. + app. 79 p.
 Koljonen, Timo; Solantausta, Yrjö; Salo, Kari; Horvath, Andras. IGCC Power Plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity. 1999. VTT, Espoo. 77 p. + app. 4 p. VTT Tiedotteita - Meddelanden - Research Notes : 1954. ISBN 951-38-5425-6.
 Solantausta, Yrjö; Bridgwater, Anthony; Beckman, David. The performance and economics of power from biomass. Developments in Thermochemical Biomass Conversion. Banff, 20 - 24 May 1996. Bridgewater, A. & Boocock, D. (eds.). Vol. 2. Blackie Academic & Professional. London. (1997), 1539 - 1555
 Solantausta, Yrjö; Mäkinen, Tuula; Kurkela, Esa; McKeough, Paterson. Performance of cogeneration gasification combined-cycle power plants employing biomass as fuel Proc. Conf. Advances in Thermochemical Biomass Conversion. Interlaken, Switzerland, 11 - 15 May 1992. Vol. 1. Advances in Thermochemical Biomass Conversion. Vol. 1. Ed. Anthony V. Bridgwater. Blackie Academic & Professional. Glasgow. (1994), 476 - 494
 14 several

22	C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels, Progress in Energy and Combustion Science, 19: 71-104, 1993
	C. Di Blasi, Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis, Combustion Science and Technology, 90:315-339, 1993
	C. Di Blasi, Numerical simulation of cellulose pyrolysis, Biomass and Bioenergy, 7: 87-98, 1994
	C. Di Blasi, Processes of flames spreading over the surface of charring solid fuels; effects of fuels thickness, Combustion and Flame, 97:225-239, 1994
	C. Di Blasi, Predictions of unsteady flame spread and burning processes by the vorticity-stream function formulation of the compressible Navier-Stokes equations, Int. J. of Numerical Methods for Heat & Fluid flow, 5: 511-529, 1995
	C. Di Blasi, Predictions of wind-opposed flame spread rates and energy feed back analysis for charring solids in a microgravity environment, Combustion and Flame, 100: 332-340, 1995
	C. Di Blasi, and I.S.Wichman, Effects of solid phase properties on flames spreading over composite materials, Combustion and Flame, 102:229-240, 1995
	C. Di Blasi, Mechanisms of two-dimensional smoldering propagation through packed fuel beds, Combustion Science and Technology, 106:103-124, 1995
	C. Di Blasi, On the role of surface tension driven flows in the uniform, near flash flame spread over liquid fuels, Combustion Science and Technology, 110-111:555-561, 1995
	C. Di Blasi, Influences of sample thickness on the early transient stages of concurrent flame spread and solid burning, Fire Safety Journal, 25:287-304, 1995
	C. Di Blasi, Influences of model assumptions on the predictions of cellulose pyrolysis in the heat transfer controlled regime, Fuel, 75:58-66, 1996
	C. Di Blasi, Heat, momentum and mass transfer through a shrinking biomass particle exposed to thermal radiation, Chemical Engineering Science, 51: 1121-1132, 1996
	C. Di Blasi, Kinetic and heat transfer control in the slow and flash pyrolysis of solids, Ind. Eng. Chem. Res., 35:37-47, 1996
	C. Di Blasi, Heat transfer mechanisms and multistep kinetics in the ablative pyrolysis of cellulose, Chemical Engineering Science, 51:2211-2220, 1996
	C. Di Blasi, Modeling of solid and gas phase processes during composite material degradation, Polymer Degradation and Stability, 54: 241-248, 1996
	C. Di Blasi, M. Lanzetta, Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, J. of Analytical and Applied Pyrolysis, 40-41:287-303
	C. Di Blasi, V. Tanzi and M. Lanzetta, A study on the production of agricultural residues in Italy, Biomass and Bioenergy, 12:321-331, 1997
	M. Lanzetta, C. Di Blasi, F. Buonanno, An experimental investigation of heat transfer limitations in the flash pyrolysis of cellulose, INd. Eng. Chem. Res., 36:542-552, 1997
	C. Di Blasi, Linear pyrolysis of cellulosic and plastic waste, J. of Analytical and Applied Pyrolysis, 40- 41:463-479, 1997
	C. Di Blasi, Influences of physical properties on biomass devolatilization characteristics, Fuel 76: 957- 964, 1997
	C. Di Blasi,Multi-phase moisture transfer in the high-temperature drying of wood particles, Chemical Engineering Science, 53:353-366, 1998
	M. Lanzetta, C. Di Blasi, Pyrolysis kinetics of wheat and corn straw, J. of Analytical and Applied Pyrolysis, 44:181-192, 1998
	C. Di Blasi, Numerical simulation of concurrent flame spread over cellulosic materials in microgravity, Fire and Materials, 22:95-101, 1998
	C. Di Blasi, Physico-chemical processes occuring inside a degrading two-dimensional anisotropic porous medium, INt. J. of Heat and Mass Transfer, 41:4139-4150, 1998
	C. Di Blasi, Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels, J. of Analytical and Applied Pyrolysis, 47:43-64, 1998
	C. Di Blasi, Transition between regimes in the degradation of thermoplastic polymers, Polymer degradation and Stability, in press 1998

	C. Di Blasi, G. Portoricco, M. Borelli and C. Branca, Oxidative degradation and ignition of loose- packed straw beds, Fuel, in press, 1999
	C. Di Blasi, F.Buonanni, C.Branca, Reactivities of some biomass chars in air, Carbon, in press, 1999
	C. Di Blasi, C. Branca, Global degradation kinetics of wood and agricultural residues in air, The Canadian Journal of Chemical Engineering, in press, 1999
	C. Di Blasi, G. Signorelli, C. di Russo and G. Rea, Product distribution from pyrolysis of wood and agricultural residues, Ind. Eng. Chem. Res., in press, 1999
	C. di Blasi, G. Signorelli, G. Portoricco, Fixed-bed countercurrent gasification of biomass at a laboratory scale, INd. Eng. Chem. Res., in press, 1999
36	REBOS, REASIM (packed bed): Habilitation Raupenstrauch 1997
	PYROSIM (single particle): dissertation PETEK 1998
	CATSIM (catalytic conversion): Dissertation Wanker 1999
37	S. Welch, A Ptchelintsev: "CFD predictions of heat transfer to a steel beam in a fire", Second International Seminar on Fire-and-Explosion Hazards of Substances and Venting of Deflagrations, Moscow, Russia, 11-15 August, 1997
	P.A. Rubini, J.B. Moss, "Coupled soot and radiation calculations in compartment fires". Second International Conference on Fire Research and Engineering, NIST, Maryland, USA. 1997
	S. Welch, P.A. Rubini. "Three dimensional simulation of a fire resistance furnace". Proceedings of 5th International Symposium on Fire Safety Science, Melbourne, Australia, March 1997, International Association for Fire Safety Science, ISBN 4-9900625-5-5.
	M.J. Lewis, J.B. Moss, P.A. Rubini. "CFD modelling of combustion and heat transfer in compartment fires". Proceedings of 5th International Symposium on Fire Safety Science, Melbourne, Australia, March 1997, International Association for Fire Safety Science, ISBN 4-9900625-5-5.
	P.A. Rubini. "SOFIE - Simulation of Fires in Enclosures", Proceedings of 5th International Symposium on Fire Safety Science, Melbourne, Australia, March 1997, International Association for Fire Safety Science, ISBN 4-9900625-5-5.
	N.W. Bressloff, J.B. Moss, P.A. Rubini. "CFD Prediction of coupled radiation heat transfer and soot production in turbulent flames". 26th International Symposium On Combustion, The Combustion Institute, 1996
	J.B.Moss, C.D.Stewart, "Flamelet based smoke properties for the field modelling of fires", Fire Safety Journal (accepted for publication 1998).
40	Schnell, U., Schneider, R., Hagel, H.C., Risio, B., Lapper, J., Hern, K.R.G., Numerical Simulation of Advanced Coal-fired combustion systems with in-furnace NOX control technologies. 3rd int. conference on cocombustion technologies for a clean environment, Lisboa, 3-6 July 1995

15. Do you have interest in cooperation?

Yes:	12 92%
No:	1 8%
1	Combustion of wood
4	experimental data for validation comparison to other models for packed bed combustion
5	Modeling of fixed-bed combustion on grate systems (drying, volatilization, char combustion); CFD modeling of gas phase combustion in fixed bed furnaces; exchange of experience concerning reaction and flow models used.
7	Thermodynamic conversion of biofuels and waste
10	All thermochemical biomass conversion processes
22	pyrolysis and gasification of biomass and waste

24	combustion and gasification emission chemistry
35	modelling
	measuring velocity, concentration, particle size and particle velocity
36	Computer simulation of firing systems
39	application and validation of the model
40	- Experimental and numerical investigations of the combustion process in small scale wood heaters or other biomass fired furnaces
	- Applications of the ALOLOS code on different firing systems

1	Name:	Øyvind Skreiberg	Position:	Research Scientist, Ph.D.
	Company	Institute of Thermal Energy and hydrop	ower	
	Address:	N-7034 Trondheim Norway		
	Phone:	+47 73592970	Fax:	+47 73598390
	Email:	oesite@tev.ntnu.no	Internet:	www.maskin.ntnu.no/tev
	Project:			
4	Name:	Ch. Bruch and Thomas Nussbaumer	Position:	
	Company	LTNT, ETH Zürich		
	Address:	ML, CH-8092 Zürich Switzerland		
	Phone:	+41 (1) 6327160	Fax:	+41(1) 6321176
	Email:	bruch@iet.mavt.ethz.ch	Internet:	www.itnt.ethz.ch
	Project:			
5	Name:	Robert Scharler	Position:	Research Assistant
5	Name: Company	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma	Position: of Chemical Biomass L	Research Assistant Engineering Fundamentals and Plant Jtilisation
5	Name: Company Address:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria	Position: of Chemical Biomass L	Research Assistant Engineering Fundamentals and Plant Itilisation
5	Name: Company Address: Phone:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31	Position: of Chemical Biomass U Fax:	Research Assistant Engineering Fundamentals and Plant Itilisation +43 316 48 13 00 - 4
5	Name: Company Address: Phone: Email:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at	Position: of Chemical Biomass U Fax: Internet:	Research Assistant Engineering Fundamentals and Plant Itilisation +43 316 48 13 00 - 4
5	Name: Company Address: Phone: Email: Project:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas con Nox	Position: of Chemical Biomass L Fax: Internet: nponents fro	Research Assistant Engineering Fundamentals and Plant Itilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling
5	Name: Company Address: Phone: Email: Project: Name:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas con Nox	Position: of Chemical Biomass L Fax: Internet: nponents fro Position:	Research Assistant Engineering Fundamentals and Plant Itilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling Manager R&D
7	Name: Company Address: Phone: Email: Project: Name:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas con Nox Anders Hallgren Thermiska Processer AB	Position: of Chemical Biomass L Fax: Internet: nponents fro Position:	Research Assistant Engineering Fundamentals and Plant Itilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling Manager R&D
5	Name: Company Address: Phone: Email: Project: Name: Company	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas com Nox Anders Hallgren Thermiska Processer AB Studsvik	Position: of Chemical Biomass U Fax: Internet: nponents fro Position:	Research Assistant Engineering Fundamentals and Plant tilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling Manager R&D
7	Name: Company Address: Phone: Email: Project: Name: Company Address:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas com Nox Anders Hallgren Thermiska Processer AB Studsvik S-61182 NYKÖPING Sweden	Position: of Chemical Biomass L Fax: Internet: nponents fro Position:	Research Assistant Engineering Fundamentals and Plant tilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling Manager R&D
7	Name: Company Address: Phone: Email: Project: Name: Company Address:	Robert Scharler Technical University of Graz, Institute of Engineering, Research Group Therma Inffeldgasse 25/II 8000 Graz Austria +43 316 48 13 00 - 31 oldset@sbox-tu.graz.ac.at investigation of release of flue gas com Nox Anders Hallgren Thermiska Processer AB Studsvik S-61182 NYKÖPING Sweden +46 155 221330	Position: of Chemical Biomass L Fax: Internet: nponents fro Position: Fax:	Research Assistant Engineering Fundamentals and Plant tilisation +43 316 48 13 00 - 4 om biomass fuel bed, chemkin for modelling Manager R&D +46 155 221398/263052

Project: Improved energy generation based on biomass FBC with minimum emission (Joule 980200)

10	Name:	Yrjö Solantausta	Position:	Research Scientist
	Company	VTT Energy		
	Address:	PO Box 1610 FIN-02044 VTT, ESPOO FINLAND		
	Phone:	+358 9 456 5517	Fax:	+358 9 460 493
	Email:	yrjo.solantausta@vtt.fi	Internet:	www.vtt.fi
	Project:	IEA Bioenergy Task 22: Techno-econo	mic assess	ments for bioenergy applications
14	Name:	Robert P. van der Lans	Position:	Research Assistent Professor
	Company	CHEC, Inst. for Kemiteknik, DTU		
	Address:	2800 Lyngby (B229) Denmark		
	Phone:	+45 45 88 3288	Fax:	+45 45 88 2258
	Email:	RL@kt.dtu.dk	Internet:	
	Project:			
22	Name:	Prof. C. Di Blasi	Position:	Professor
	Company	Universitá Degli Studi di Napoli (IT)		
	Address:	Piazzale V. Tecchio 80 IT-80125 Napoli Italy		
	Phone:	+39 81 7682232	Fax:	+39 81 2391800
	Email:	diblasi@unina.it	Internet:	
	Project:	Fixed bed gasification of agricultural re-	sidues (JOI	R3-CT95-021)
24	Name:	Pia Kilpinen	Position:	Associate Professor
	Company	Åbo Akademi University, Combustion F	Research G	roup
	Address:	Lemminkaisenkatu 14-18 B FIN-20520 TURKU/ÅBO Finland		
	Phone:	+35 8 2 2154681	Fax:	+35 8 2 2154780
	Email:	pia.kilpinen@abo.fi	Internet:	
	Project:	Development of selective oxidation tech gasification power plants	hnology for	NOx emission reduction reduction in

35	Name:	Fuchs Laszlo	Position:	Professor
	Company	Lund Institute of Technology (LTH)		
	Address:	box 118 22100 Lund Sweden		
	Phone:	+46-46 2224300	Fax:	+46-46 2224717
	Email:	Lazlo.Fuchs@vok.lth.se	Internet:	http://www.fm.vok.lth.se/
	Project:	Modelling of the combustion of biomas	S	
36	Name:	Ao. univ-Prof. Dr. Harald Raupenstrauch	Position:	Professor
	Company	University of Technology, Institute for A Technology	Apparatus D	Design, Particle Technology and Combustion
	Address:	Inffeldgasse 25 8010 Graz Austria		
	Phone:	+43 316 873 7497	Fax:	+43 316 873 7492
	Email:	raupe@amvt.tu-graz.ac.th	Internet:	
	Project:			
37	Name:	Anders Lönnermark	Position:	M.Sc.
	Company	SP Swedish National Testing and Rese	earch Institu	ute
	Address:	Box 857 50115 Boras Sweden		
	Phone:	+46 33 165691	Fax:	+46 33 417759
	Email:	anders.lonnermark@sp.se	Internet:	www.sp.se/fire/
	Project:	CFD modelling of small scale biomass	-fired boiler	S
39	Name:	Jenny Larfeldt	Position:	
	Company	TPS		
	Address:	Studsvik S-61182 NyKöping Sweden		
	Phone:	+46-155-221308	Fax:	+44-155-221398
	Email:	jenny.larfeldt@tps.se	Internet:	www.tps.se
	Project:	Optimised combustion of wood and wo	od-waste fu	uels in a stoker fired boiler

40	Name:	Dipl. Ing Roland Berger	Position:	Head of dept. Chemical Engineering
	Company	IVD, Un. of Stuttgart		
	Address:	Pfaffenwaldring 23 D-70550 Stuttgart Germany		
	Phone:	+49-711-6853492	Fax:	+49-711-6853491
	Email:	berger@ivd.uni-stuttgart.de	Internet:	www.ivd.uni-stuttgart.de
	Project:	Newly designed wood burning systems	with low er	missions and high efficiency

Questions 1 to 4

Question 5

5: parts of the process that are modelled

ID a b b b b c c c c d d d d d d d d e e e e e f f f f f f g g g g g g g g 1 2 3 123 1 2 3 4 5 6 - 7 1234 1 2 3 4 5 6 1 2 3 4 5 6 7 7 24 36 37 39 🗸 🗌 40

Question 6 to 10

	6. fuel	7: transport of biomass	10: language
ID		abcdefg	abcdef
1	wood		
4	wood, but other biomass can also be modeled		
5	wood		
7	general		
10	wood, but other biomass can also be modeled		
14	straw		
22	wood		
24			
35	wood		
36	wood, bark		
37	general		
39	wood, but other biomass can also be modeled		
40	wood		

Questions 11 to 16

	11	: ce	om	me	rc	ial	pa	cka	ge	12	2: o	pei	rati	ing	sy	vste	m	 	13: nte	use rfa	er ce	a	1 vai	4: labi	lit	y	16: co- op?
ID	a	b	С	d	e	f	g	h	i	a	b	с	d	e	f	g	h	a	b	с	d	a	b	C	d	e	
1		✓										✓	✓	✓				✓	✓	✓		✓	✓				
4	✓								✓	✓								✓								✓	
5		✓							✓					✓				✓	✓	✓					✓		\checkmark
7									✓	✓	✓	✓	✓	✓					✓	✓					✓		
10													✓							✓				~ [
14	✓											✓	✓	✓				✓								✓	\checkmark
22	✓									✓								✓								✓	\checkmark
24									✓	✓						✓		✓							✓		
35	✓									✓	✓			✓				✓	✓			✓					
36									✓	✓								✓		✓					✓		\checkmark
37	✓									✓				✓					✓		✓		✓			✓	
39									✓	✓								✓							✓		
40	✓								✓	✓								✓						v [

ANNEX 3: Copies of the overheads presented

Modelling of biomass and waste combustion at TNO A.R.J. Arendsen, TNO, Netherlands

Department of Thermal Con	of version Technology	
Mission statement :	development and implementation technology for thermal conversio biomass and waste	of new n of
Technology :	combustion, gasification, pyrolys liquefaction	is,
Type of work :	technology development, applied research, studies, consultancy	MEP ald auteur datum

Application	Thermo- dynamic	Empirical regression	Empirical process identification	Expert	Physical / chemical stationary	Physical / chemical dynamic	CFD
System design / optimization	++			+	++	++	
Apparatus design / optimization		+		+	++	++	÷
Control design / optimization			++			++	
Selection biomass				+	++	++	
Operational management			+			++	

Model development:

- Dynamic models of a grate combustion plants for biomass and waste
- Overall dynamic system model of CFBG-STEG

Applications:

- Process identification of dynamic behaviour for validation of the models
- Optimization and development of control systems
- Software sensors for monitoring of combustion processes

ЪЪ

• Simulators for operator training and advising

Biomass Modelling Tools at Åbo Akademi Edgardo G. Coda Zabetta, Åbo Akademi, Finland Modelling of batch combustion processes Øyvind Skreiberg, Norwegian University of Science and Technology, Norway Optimisation of Low-NOx biomass grate furnaces with CFD modelling Robert Scharler, TU Graz, Austria

Optimisation of Low-NOx Biomass Grate Furnaces with CFD Modelling

Robert Scharler Alexander Weissinger Ingwald Obernberger

Research Group: THERMAL BIOMASS UTILISATION Head: Dr. I. Obernberger Institute of Chemical Engineering Fundamentals and Plant Engineering Technical University of Graz, AUSTRIA

> Objectives

- > Description of the furnaces modelled
- > Modelling approach & future improvements
- Results of CFD application to biomass grate furnaces
- Conclusions
- > Options for co-operation

- CFD based optimisation of biomass grate furnaces
- > CFD analysis of operating conditions
- Development of guidelines for furnace design and process control
- Pre-evaluation of new combustion technologies and furnace geometries
- Reduction of test runs

Low-NO_x biomass grate furnaces

Pilot-scale Low-NO_x furnace (440 kW_{th}) equipped with a horizontally moving grate

- Definition of profiles regarding the thermal decomposition of solid biomass along the grate on the basis of test runs
- > Definition of conversion parameters for the calculation of CH_4 , H_2 , CO, CO_2 , H_2O , and O_2 concentrations in the flue gas formed
- Stepwise balancing of mass, species and energy

Profiles of temperature and H₂O concentration of the flue gas along the grate

> Turbulence

Radiation

Gas phase combustion

Realizable k-e Model

Eddy Dissipation Model (EDM)/ global 3-step mechanism

Discrete Ordinates Model

Fly-ash particle trajectories / erosion rates Lagrangian particle tracing procedure

Residence time distribution of the flue gas Lagrangian particle tracing procedure

Gas phase combustion -Eddy Dissipation Model (EDM)

Contours of CO concentrations in the furnace calculated with different mixing constants A_{mag}

- Reaction rate is given by the limiting (lower) value of mixing and kinetic rates
- Cannot properly account for interaction of turbulence and chemistry
- Empirical constants of the mixing rates are not universally valid

Optimisation of secondary air nozzles

Newly developed biomass grate furnace equipped with a horizontally moving grate

CO concentrations [vol-ppm] (above) and temperature distribution [°C] (below) in different cross-sections near secondary air injection

- CFD modelling is an efficient tool for the technological and economic optimisation of biomass grate furnaces
 - Comparison of CFD modelling results with hot gas in-situ measurements of flue gas components in the primary combustion zone and with continuous CO measurements at boiler outlet showed reasonable accuracy
 - Applicability has been proven by practical applications
 - **Generation** of investment costs and operation costs is possible

- Experimental investigation on the release of gaseous compounds from solid biomass fuels at a lab-scale reactor (improving the definition of boundary conditions for CFD modelling and chemical kinetic simulations)
- Implementation of an advanced Eddy Dissipation Concept
- Implementation of a NO_x post-processor

Exchange of experience

Combustion modelling

CFD modelling of biomass grate furnaces

^{CP}Modelling of heterogeneous biomass combustion on the grate

CFD applications

> Exchange of experimental results

^C HCN, NO, NH3 conversion rates for different reactors and biomass fuels ^C Conversion rates for different fuel particle sizes Mathematical models for design and development of fixed-bed gasification systems Colomba Di Blasi, Università degli Studi di Napoli "Federico II", Italy A numerical model for fixed bed combustion Jenny Larfeldt, TPS, Sweden

CFD modelling of biomass combustion Xue-Song Bai, Lund Institute of Technology, Sweden

CFD Modeling of Biomass Combustion

Xue-Song BaiDivision of Fluid MechanicsLund Institute of Technology, Sweden

Turbulent Combustion related projects at LTH-FM

Flame/turbulence interaction

- LES of flame kernel propagation
- LES of swirling stabilized flames

Modeling with detailed chemistry

- soot formation in turbulent diffusion flame
- CO, NOx formation in premixed turbulent combustion Biomass
- small-scale biomass combustion

A biomass furnace studied

Biomass Combustion

Gas phase oxidation - turbulent combustion

• volatile ---- CO2, H2O, CO, NOx, soot, heat ...

Model used:

- Favre averaged N-S, enthalpy and species transport eqns.
- k-ε turbulence model, Bossinesq hypothesis
- Eddy dissipation concept (EDC) model for the mean reaction rates
- Global reaction mechanism
 - hydrocarbon oxidation
 - NOx formation

Model under development

- Coupling detailed chemical kinetics
 - Can one employ detailed chemistry based on EDC?
 - Flamelet approach: flamelet library with presumed PDF
 - when it is valid?
 - Multiple inlets
 - partially premixed
 - modeling the influence of turbulence (flame stretch, local quenching ...)
 - flamelet approach?

Particle combustion - two-phase flow

• char ---- CO, CO2, heat ...

Two-phase flow combustion

- Eulerian/Lagrangian two-way coupling, source terms
- Char oxidation

 $C + 0.5O_{2} \rightarrow CO$ $C + O2 \rightarrow CO_{2}$ $C + CO_{2} \rightarrow 2CO$

Bed combustion

- wood, biomass convert
 - tar, light HC, CO, H2, CO₂, H₂O, HCN, NHx ...

Model used

- a simplified model
 - derived from element mass and energy conservation
 - assigning a few non-zero concentration species
 - a number of species and temperature have to be obtained from experimental measurement

Model validation -O2

Model validation, CO

Model validation

Major species and Temperature

- generally agreeable with experiments
- with difficulty in modeling the EDC rate in case of partially premixing above the bed

CO

- not accurate, can differ by more than 50%
- two-phase char combustion may be very influential NOx
- order of magnitude has been found agreeable with exp.
- Need to model radicals for fuel-NO path

CFD analysis of furnace performance

NOx emissions

Particle erosion on the walls

Gase II Le-o m

Modelling of Solid Fuel Conversion and Transport with TOSCA Bernhard Peters, FZK, Germany Modelling of Solid Fuel Conversion and Transport with TOSCA (Tools of Object-oriented Software for Continuum Mechanics Applications)

Workshop "Biomass Combustion Modelling" Sevilla, June 5 - 9, 2000

Bernhard Peters Research Centre Karlsruhe, Germany

- 1. Introduction
- 2. Objectives
- 3. Model Approaches
- 4. General Remarks

Objectives

- 1. Description of governing processes
 - thermal conversion of solid fuel particles
 - heat/mass transfer betwenn solid and gas phase
 - transport and mixing of solid fuel particles
 - gas flow and conversion in the void space of a particle ensemble
- 2. Fudamental understanding of solid fuel combustion
- Environmental friendly incineration through determination of pollutant formation and destruction

Global Approach

Description of entire process by coupling of models for sub-processes

 $\mathsf{Process} = \sum \mathsf{Sub-processes}$

Sub-processes:

- Conversion of a finite number of solid fuel particles
- Transport of a finite number of particles
- Fluid and thermodynamics of void space

Particle Model

Purpose: Prediction of conversion of particles of different sizes and materials

- Particle processes: heating, drying, pyrolysis/devolatilisation, gasification/combustion
- One-dimensional (sphere, cylinder, plate) and transient conservation equations for energy, mass, porosity and specific inner surface
- 13 gaseous, 3 liquid and 24 solid species available in data base in conjunction with 55 different reactions in various combinations
- Yields distribution of relevant variables versus time and length together with integral properties for solid fuel conversion

Transport Model

Purpose: Prediction of the motion of a particle ensemble on a grate, in a kiln or a fluidised bed

- Takes into account different shapes and materials
- Motion described by 2^{nd} law of Newton for position and orientation
- Forces acting on a particle include:
 - Visco-elastic contact forces
 - Buoyancy forces
 - Drag forces

CFD-Model

Purpose: Prediction of the gas flow in the void space of a particle ensemble

- Prediction of turbulent reactive flow within the void space of a packed bed as a porous material
- Solution of the conservation equations for mass, momentum and energy with SIM-PLER algorithm
- Friction approximated by Darcy/Forchheimer relationship
- Global kinetics for gas phase reactions
- Release of species and energy due to solid fuel conversion (heat/mass transfer) into upper gas plenum

General Notes

- Object-oriented programming with C++ (C and Fortran)
- Operating systems: UNIX and MS-Windows
- Graphical user interface under development
- Mesh generation and post processing carried out with public and commercial packages (NetGen, Data Explorer)
Modelling wood combustion in grate furnaces by calculation of the solid fuel transport and conversion on the grate followed by CFD calculations in the gas phase

Thomas Nussbaumer, Verenum, Switzerland

Straw Bed Conversion Robert van der Lans, CHEC, Inst. for Kemiteknik, DTU, Denmark

Application of the 3D Combustion Code AIOLOS to Small Scale and Industrial Combustion Systems Sven Unterberger, IVD, Stuttgart, Germany

Application of the 3D Code AIOLOS to Small Scale and Industrial Combustion Systems

S. Unterberger, IVD, University of Stuttgart

- New and improved furnace design from pilot to large scale
- Optimisation of operational performance of existing boilers
- Investigation of parametric effects, e.g.:
 - fuel characteristics (fuel composition, particle size, etc.)
 - burner layout
 - furnace geometry (air distribution, heat transfer, etc.)
- Advantages compared to experimental procedures:
 - cost and time reduction
 - reproducability of boundary conditions
 - insight in to complex inter-linked physical phenomena

Cost-effective Tool for Analysis and Optimisation

- AIOLOS: - originally designed for simulation of pulverised coal (fuel) combustion

- gas combustion
- using models for:
 - turbulent two phase flow
 - (radiative) heat transfer
 - heterogeneous and homogenous reactions

(Original) Objectives of AIOLOS

Industrial Partner	Power Plant	Output	Combustion System	Fuel
Saarberg AG	MKV Völklingen	$490 \text{ MW}_{\text{th}}$	Swirl burners on opposite walls	bitum. coal
RWE Energie AG	Niederaußem B	150 MW _{el}	Roof firing with six swirl burners	brown coal
OKA (Austria)	Riedersbach II	160 MW _{el}	tangential firing (corner firing)	bitum. coal
EVT GmbH	St. Andrä	$270 \text{ MW}_{\text{th}}$	tangential firing (corner firing)	bitum. coal
EVT GmbH	Bexbach	750 MW_{el}	tangential firing (corner firing)	bitum. coal
Steinmüller GmbH	Tiefstack	$252 \text{ MW}_{\text{th}}$	Six swirl burners on front wall	bitum. coal
Steinmüller GmbH	Niederaußem H	600 MW_{el}	tangential firing (all-wall firing)	brown coal
EVT GmbH	Bexbach	750 MW_{el}	tangential firing (corner firing)	bitum. coal
Steinmüller GmbH	Schkopau	450 MW_{el}	tangential firing (all-wall firing)	brown coal
ENEL (Italy)	Fusina #2	$450 \text{ MW}_{\text{th}}$	tangential firing (16 burn./4 levels)	bitum. coal
Eskom (R.S.A.)	Hendrina #9	200 MW_{el}	wall firing with 24 swirl burners	bitum. coal
Badenwerke AG	Rheinhafen	550 MW_{el}	32 swirl burners on opposite walls	bitum. coal
ENEL (Italy)	Vado Ligure #4	320 MW_{el}	24 low NOx swirl burners (wall fir.)	bitum. coal
Neckarwerke AG	Altbach HKW II	334 MW _{el}	tangential firing (all-wall firing)	bitum. coal
Eskom (R.S.A.)	Kendal	680 MW _{el}	tangential firing, tilting burner	bitum. coal
			nozzle	

Application of AIOLOS to Industrial Utility Boilers

- 3D Finite Volume code for weakly-compressible, turbulent reactive flows
- Boundary-fitted, cartesian and cylindrical co-ordinates
- Non-staggered grid with SIMPLEC pressure correction scheme
- Higher-order discretisation schemes
- Solution algorithms: SOR, SIP and ILU-preconditioned CG-methods
- Domain decomposition technique
- Temporal discretisation with Euler Implicit (transient)
- Hybrid parallelisation strategy

General features of AIOLOS

Turbulent flow

- k-ε model and Differential Reynolds Stress model (RSM)
- Eulerian approach
- Lagrangian particle tracking method -

Heat transfer

- **Discrete Ordinates Method** Semi-stochastic Monte
- Discrete Transfer
- Flux Model
- Finite Volume Method

Reaction Model

- Global reaction scheme for pulverised solid fuel combustion, (pyrolysis, volatile combustion (EDC), char burnout)
- Consideration of particle size distribution -
- NO_x post-processor (fuel-NO and thermal-NO) -

Mathematical models

- Model Carlo-Model
- Moment Method

Volatile Combustion

$$C_{n}H_{m} + \left[\frac{m}{2} + \alpha \frac{n}{4}\right] \cdot O_{2} \Rightarrow m \cdot CO + \left[\frac{n}{2} + \alpha \frac{n}{4}\right] \cdot H_{2} + \alpha \frac{n}{2} \cdot H_{2}O$$

 α from water-shift reaction

$$CO + \frac{1}{2} \cdot O_2 \Longrightarrow CO_2$$
$$H_2 + \frac{1}{2} \cdot O_2 \Longrightarrow H_2O$$

Volatile Combustion

Reaction Scheme of Coal Combustion

Extended Kinetic Reaction Scheme of Pulverized Coal Combustion

Kinetic Reaction Scheme of Fuel-Nitrogen Conversions

possible biomass combustion systems

fixed bed combustion

- wood logs
- wood pellets
- wood chips in :
 - underfeed firings
 - grate firings

pulverised fuel combustion

(co-)combustion of pulverised biomass fuels, such as:

- wood

- straw
- miscanthus

gaseous fuels

pre-treatment of biomass by:

- pre-pyrolysis
- pre-gasification

use of gas as reburn fuel in coal boilers

Application to Biomass (Co-)Combustion Systems

(Co-)Combustion of Biomass in PF-Systems

Investigations on Domestic Heating Appliances

- Models for solid fuel conversion including transport and reaction kinetics
- Interface between fixed bed model and gas phase model (grid, heat transfer, pyrolysis gases and combustion products)
- Further development of gas phase reaction model (consideration of species and pollutants released from biomass)
- Validation of models by experimental investigations in combustion system of various scales

Future Improvements/ Extensions