Carbon Capture Demonstration plant at ARC

Projektleder Jannik Kappel

avc

Municipal solid waste and CO₂ 2021

The Potential of CO2-capture

arc

PENTAIR

Post-combustion capture & industrial CO₂ removal

Solvent based CO₂ capture

<section-header><section-header><section-header></section-header></section-header></section-header>	 Demonstration Built for stable operation Simulation of DH integration CO2 dried, cooled and liquified. Ready for utilization 	Full scale
Summer 2021 20-40 kg/h	Summer 2023 160 kg/h	 Soon 500.000 ton/year
Own money plus fun	ding from EUDP	Funding to be found
ARC/Pentair/DTU	/Rambøll	ARC/CMP/??

Liquifaction

P seen from ground

CO

Campaigns

MEA Base case

- Using existing abs. Heat pumps
- District Heating (DH) simulation
- Different cooling configurations

Autumn 2023

160 kg/h

CESAR

- Lowest possible specific energy demand
- Solvent stability
- Emissions

MEA Base case

- Warm flue gas, enhanced DH production
- DH simulation
- More cooling configurations

Winter 2023 160 kg/h **Spring 2023** 160 kg/h

CO₂ is captured, compressed, liquified and put in the tank

a/c

4 Præstationsmålinger

Continuos emission Measurements

 Cor Las Gas 	ntinuous Meas ergas + zirkor CO ₂ + NH _{3 +}	nium stick:	Sure)		Skorsten	Measu A ₁ +A ₂) B) C: D:	ring points Existing station New equipment O ₂ , NH ₃ + CC normalized for water, oxygen, temperature and preassure Loading cell Carboscan 300 + sensory cha) ₂ ımber
	Aminer	Nitroso-mix US EPA	1 37	A			в	
	MEA (monoethanol amine)	NDMA		Ť	Ť		I	
	DEA (diethanol amine)	NDELA						
	TEA (triethanol amine)	NPIP						
	Piperazine	NDBA		Røgrens ₁	Røgre	ens ₂	Demonstrations-	k
	AMP Nitrosopiperazin	NMEA NMOR					anlæg	
	di-nitrosopiperazin	NDPA		+	4	•		
	Alkylamines	NPYR						
	Methylamine	Nitroso-HeGly						
	dimethylamine	Total nitrosamine (TONO)						
	ethylamine	Aldehyder og ketoner						
	Amider	Acetaldehvd						
	Formamide	Acetone						
- •	Acetamide							

CCDP konfiguration

Designed for 90-95% CO2-capture, can capture 160kg CO₂/h.

Automatic control via temp, pressure, flow and dew point measurements.

Approximately 30 minutes circulation time for solvent molecule.

The absorber has two intercoolers. One in the middle of the absorber, and one that can be shifted between top and bottom. This gives five configurations:

Config.	1	2	3	4	5
TOP IC			Х	Х	
MID IC	х			х	Х
BOTTOM IC		х			Х

Possibility of cold split, where a part of the loaded CO_2 solvent is lead directly to the top of the stripper rather than through the central heat exchanger.

Heat stable salts and other impurities are removed from the solvent in a reclaimer.

a/c

Results from pilot-project

September 2021 – April 2022

Solvent analyse pilot

- Installation of filters
- Operating conditions are reflected in solvent stability.
- Limited degradation of solvent, during stable operation.

Figure 9. Lean 30 wt% MEA samples taken from July to December 2021. Vertical black line indicates installation of solvent filter.

Emission measurements and degradation of solvent from waste incineration plant Amager Resource Centre (ARC), CO2 capture pilot campaign

Scientific publications

- <u>Pilot-scale Post Combustion CO₂ Capture at Amager Ressourcecenter (ARC) Denmark: Challenges and Experiences</u>
- <u>Emission measurements and degradation of solvent from waste incineration plant Amager Resource Centre (ARC),</u> <u>CO₂ capture pilot campaign</u>
- <u>A Call for Standards in the CO₂ Value Chain</u>
- Base-case results from pilot-scale CO2 capture testing using 30 wt% MEA at a Waste-to-Energy facility
- Pilot-scale CO2 capture demonstration of split-flow configuration using 30 wt% MEA at a Waste-to-Energy facility

List is updated here:

- <u>a-r-c.dk/co2</u>
- https://a-r-c.dk/english/demonstration-plant-for-carbon-capture-2023/