Prof. Dr. Thomas Nussbaumer Verenum AG, Zürich Lucerne University of Applied Sciences and Arts, Horw (LU) (HSLU)

Cascading wood boilers for low emissions

Part 1: Monitoring of series-products from 70 kW – 500 kW with periodic de-ashing systems (Verenum)

Part 2: System modeling for general evaluation (HSLU)

International Energy Agency Bioenergy Task 32 Workshop at 27. Fachgespräch Arbeitskreis Holzfeuerung am 5. Juni 2024, TFZ, Straubing (D)

- Team: Adrian Lauber, Verenum (Monitoring) Felix Schumacher, HSLU (Modelling) Jürgen Good, Verenum & QM
- Funding: Swiss Federal Office of Energy
- Partner: Allotherm AG Heitzmann AG Liebi LNC AG Schmid AG energy solutions

Holzenergie Schweiz Holzfeuerungen Schweiz Energie Ausserschwyz AG

IEA Bioenergy Task 32

1. Introduction and aim

- 2. Fundamentals
- 3. Part 1: Practical investigation
- 4. Part 2: Process modeling
- 5. Conclusions

Initial situation: Facts

This can potentially cause frequent start-ups and increased emissions

Initial situation: Consequence: Requirements from Air Pollution Control Authorities*

R 1: Limitation of boiler starts	- maximum 500 starts per year** (per plant but in discussion)
	- maximum 5 starts per day

R 2: Minimum load condition: the operation of biomass heating plant is only allowed if one boiler is in continuous operation for at least 12 hours per day

To fulfill these, **bivalent systems** with fossil boilers for peak and minimum load were often used

This is not accepted any more due to 10% to 25% fossil share

Approach

Cascades of wood boilers are applied

- to enable a broad load range
- or in some cases due to practical or economic reasons

Aim Aim of the project is to investigate under which conditions cascades can fulfill the air pollution requirements, i.e.

- number of starts < 500 per year and operation > 12 hours per day

- 1. Introduction and aim
- 2. Fundamentals: Effect of
 - definition of storage status S and
 - control concept for 'load management' for boiler on/off

Heat storage tank with temperature signals and definition of "warm" and "cold" with an ideal stratification and thermocline, thus two temperature levels

Definition of "Storage status"

Standard with 5 temperature sensors and 6 levels for S = 0, 20, 40, 60, 80, 100%

Limitations

- "warm" and "cold" temperatures vary
- the signal is not continuous but step-wise

Not ideal for control purposes due to steps, uncertainties and random

Definition of "Storage status"

Definition Variant 1: Sensor "warm" or "cold" results in 6 discrete levels for S = 0, 20, 40, 60, 80, 100%

Definition of "Storage status"

Definition Variant 1: Sensor "warm" or "cold" results in 6 discrete levels for S = 0, 20, 40, 60, 80, 100%

Example: S = 60% corresponds to 50% to 75% of warm storage volume, thus definition is not ideal

1. Introduction and aim

2. Fundamentals: Effect of

- definition of storage status S and
- control concept for 'load management' for boiler on/off

Control concept: Thresholds for start or stop of a boiler

A: individual conditions, fixed for each boiler

for limited number of boilers expansion causes need for new control concept

B: general conditions, (thus dynamic)

for unlimited number of boilers expansion of heat pland without need of adaptations

HSLU Hochschule

- 1. Introduction and aim
- 2. Fundamentals
- 3. Practical investigation
- 4. Process modeling
- 5. Conclusions

nvestigated plants Plant 1		Plant 2	Plant 3	
Fuel	Wood chips	Wood pellets	Wood pellets	
Number of wood boilers	4	3	2	

Investigated plants	Plant 1	Plant 2	Plant 3	
Fuel	Wood chips	Wood pellets	Wood pellets	
Number of wood boilers	4	3	2	
Installed capacity	1'320 kW	260 kW	170 kW	
	4 x 330 kW	100 kW / 80 kW / 80 kW	2 x 85 kW	
Full load hours	ca. 2000 h/a	ca. 1600 h/a	ca. 3200 h/a	
Storage capacity at ΔT 40 K				
- at nominal load	46 min	73 min	68 min	
- for 2/3 of installed capacity	69 min	110 min	102 min	recommendation > 60 min: ok
Control concept	Phase 1: Type B (general condiitions) Phase 2: Type A (individual condiitions)	Type A (individual conditions)	for two boilers Type A = Type	S B
Storage status S	Variant 5	Variant 4	Variant 4	
	20 °C – 80 °C	30 °C – 80 °C	40 °C – 80 °C	;
Load control	all boilers	one boiler	all boilers	
Modulation range	50 % - 100 %	40 % - 100 %	35 % - 100 %	

Usual de-ashing intervall 12 h of operation

Comparison of effect of definition of Storage status S

Load modulation of the investigated plants

Results: Number of annual starts

Phase 1: original control concept. Phase 2: modified control concept. *Extrapolation.

	Number of boilers	Phase and control concept	Annual starts of the heating plant	Annual starts per boiler	
Plant 1	4	Phase 1 concept B general conditions	2469	617	

Results: Number of annual starts

Phase 1: original control concept. Phase 2: modified control concept. *Extrapolation.

	Number of boilers	Phase and control concept	Annual starts of the heating plant	Annual starts per boiler
Plant 1	4	Phase 1 concept B general conditions	2469	617
		Phase 2 concept A individual conditions	1377	344`

Optimization of control: 1. by avoidance of gaps in heat production

2. avoidance of simultaneous boiler charging

3. control concept by "individual conditions"

Results: Number of annual starts

Phase 1: original control concept. Phase 2: modified control concept. *Extrapolation.

	Number of boilers	Phase and control concept	Annual starts of the heating plant	Annual starts per boiler	
Plant 1	Plant 1 4		2469	617	
	Phase 2 concept A individual conditions		1377 ⁻	344 [•]	
Plant 2	3	_	1835	611	
Plant 3	2	-	2060	1030	

- 1. Introduction and aim
- 2. Fundamentals
- 3. Practical investigation
- 4. Process modeling
- 5. Conclusions

Model:

Plant layout

- Method: Energy balance calculated to cover the heat demand (which is a function of time)
 - in 1 minute steps
 - during 24 hours profile for four seasons
 - during 365 days in a year
 - modeling in Matlab

Control concept

Parameters:

- number of boilers 1 / 2 / 3 / 4 and more
- heat storage capacity 0 / 0.5 / 1 / 2 / 4 hours
- definition of Storage status S and control concept

Result 1:

Number

Starts

of

Cascades

٠

- increase the total number of starts, which is not relevant for the total emissions, and
- reduce the number of starts per boiler (which is relevant for the total emissions)

- Heat storage capacity of 1 hour is confirmed as reasonable standard
- Load modulation from 50% or less reduces start-ups significantly (more than storage increase)
- For modulating boilers, the number of starts is dominated by the de-ashing stops

Result 2:

Options to meet minimum load requirement of 12 hours continuous operation per day

Figure in table = Fossil share needed

Thus 0 % = fulfilled without fossil boiler

Modulation range of wood boilers	Number of wood boilers			
	1	2	3	4
100 %	97 %	27 %	17 %	12 %
90%–100 %	66 %	24 %	16 %	11 %
80%–100 %	53 %	22 %	15 %	11 %
70%–100 %	44 %	20 %	13 %	3 %
60%–100 %	35 %	18 %	12 %	0 %
50%–100 %	26 %	16 %	2 %	0 %
40%–100 %	19 %	14 %	0 %	0 %
30%–100 %	13 %	0 %	0 %	0 %
20%–100 %	10 %	0 %	0 %	0 %
10%–100 %	0 %	0 %	0 %	0 %

• Load modulation from 50 % or less is crucial to avoid unfavourable boiler operation

Cascades with at least 2 but preferably 3 boilers enable favourable operation

- 1. Introduction and aim
- 2. Fundamentals
- 3. Practical investigation
- 4. Process modeling
- 5. Conclusions

Conclusions

- 1. Cascade systems are suited for a fossil-free heat generation and to fulfill the requirements on low load and limit of starts (if counted per boiler)
- 2. To fulfill the requirements,
 - a heat storage of 1 full load hour is recommended and
 - for three boilers, a load modulation from 50 % is needed for two boilers, a load modulation from 30 % is needed
- 3. Starts due to automatic de-ashing often contribute to 50 % of the starts. Hence optimization to anticipate de-ashing and to extend the intervals are recommended.
- 4. The control concept has a significant influence on the number of starts.
 - Investigated plants had 600 annual starts per boiler and more
 - Optimization of the control concept reduced the starts to 350 per boiler

Download

- Team: Adrian Lauber, Verenum (Monitoring) Felix Schumacher, HSLU (Modelling) Jürgen Good, Verenum & QM
- Funding: Swiss Federal Office of Energy
- Partner: Allotherm AG Heitzmann AG Liebi LNC AG Schmid AG energy solutions

Holzenergie Schweiz Holzfeuerungen Schweiz Energie Ausserschwyz AG

IEA Bioenergy Task 32

The End

Number of boiler starts for plant 1

Phase 1 (control by general conditions)

Phase 2 after adaptation of control concept to individual conditions

HSLU Hochschule

31

Maximum number of boilers in operation: blue = 1, red = 2, green = 3, turquoise = 4. Black: median and quartiles. Red line: Starts due to ash removals

Example of heat demand profile: district heating network of plant 1

Ambient temperature

-> Data used to model one year as function of ambient temperature

